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Antarctic ecosystems are important
contributors to global climatic and bio-
geochemical cycles, and represent sim-
plified global sentinels that can provide
insights into howbiodiversity will respond
to global change.

New techniques to capture biodiversity
data offer promising solutions to over-
come the considerable logistical con-
straints faced by biologists in Antarctica.

Advancements in data and model inte-
gration allow the combination of limited
Antarctic ecosystems are under increasing anthropogenic pressure, but efforts to
predict the responses of Antarctic biodiversity to environmental change are
hindered by considerable data challenges. Here, we illustrate how novel data
capture technologies provide exciting opportunities to sample Antarctic biodiver-
sity at wider spatiotemporal scales. Data integration frameworks, such as point
process and hierarchical models, can mitigate weaknesses in individual data
sets, improving confidence in their predictions. Increasing process knowledge
in models is imperative to achieving improved forecasts of Antarctic biodiversity,
which can be attained for data-limited species using hybrid modelling frame-
works. Leveraging these state-of-the-art tools will help to overcome many of the
data scarcity challenges presented by the remoteness of Antarctica, enabling
more robust forecasts both near- and long-term.
biodiversity data sets to improve data
coverage and, therefore, forecasts of
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Leveraging available data, however
sparse, while increasingly focusing on in-
corporating ecological processes into
flexible, hybrid modelling frameworks
can increase the capability and accuracy
of biodiversity forecasts in Antarctica.
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Harnessing new tools to track and forecast rapid changes in Antarctica
Antarctica remains one of the most pristine locations on Earth [1], but is increasingly threatened
by a suite of global change stressors [2]. Forecasting ecological responses to ongoing anthropo-
genic change is fundamental to guiding effective protection of biodiversity in Antarctica. However,
challenges hampering ecological forecasts elsewhere are amplified in Antarctica: existing data are
sparse due to the logistical challenges of sampling, and often lack relevant biological, spatial, and
temporal information [3,4]. To improve benchmarking and forecasting of biodiversity, using tech-
niques that can harness existing data in all their forms is imperative. However, as the climate
moves away from what species have historically experienced and novel biotic interactions
become possible, models that explicitly incorporate ecological processes are becoming
increasingly necessary to improve long-term forecasts [5]. Opportunely, recent advancements
in quantitative techniques are providing a rapidly expanding suite of tools for fusing different
types of information and modelling approaches.

Here, we make a case for how these techniques can be implemented to increase the capability
and accuracy of biodiversity forecasts in Antarctica, strengthening evidence-based management
of the continent. We propose that forecasts should leverage available data, however sparse, but
increasingly focus on incorporating ecological processes into flexible, hybrid modelling tools to
improve predictions.

Antarctic ecosystems: isolated, rapidly changing, and data poor
Antarctic ecosystems are shaped by the significant challenges imposed on life in an extremely dry
continent covered in ice, with long periods of limited or no sunlight [3]. These challenges force the
majority of terrestrial biodiversity into the few existing ice-free areas, and result in relatively simple
ecosystems that are sensitive to climate-driven environmental changes [3,6]. One such change of
particular importance in these water-limited systems will be altered ice and snowmelt conditions,
including the temporal availability of meltwater [3]. Ice-free areas are predicted to expand
[6], possibly connecting historically isolated, highly endemic populations [3,7]. Moreover, the
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projected loss of sea ice will directly impact marine ecosystems via habitat and connectivity
changes, and alter the productivity of lower latitude ecosystems [8]. Habitat changes of this
nature are concerning because ocean circulation models and genomics have revealed that
organisms frequently cross the Antarctic Circumpolar Current, with establishment likely only
precluded by unfavourable conditions [9,10]. Escalating human activity on the continent is also
expected to expedite the establishment of invasive species [11–13], thereby altering ecosystem
processes by filling new functional roles [3].

Understanding Antarctic biodiversity responses to ongoing change is imperative because this
biodiversity has a critical role in global climatic and biogeochemical cycles, and food webs
[8,14]. Moreover, the simplicity of biological communities and the sharp thermal gradients
found in terrestrial Antarctica can provide insights into how species may fare under climate
change [15]. However, the current state of understanding of responses to both ongoing and
future changes leaves considerable room for improvement. To forecast how these climate
induced changes will impact Antarctic biodiversity and wider ecosystem processes, we must
first gather diverse ecological data and estimates of their uncertainty.

Data challenges in Antarctica
The extreme environmental conditions of Antarctica exacerbate the widespread data scarcity
challenge faced by conservationists and ecological modellers alike. Most of the ice-free areas
are difficult to access, and sampling is typically restricted to a short 3-month period during the
summer, making data spatially, temporally, and taxonomically restricted. A very small portion of
the continent has ever been visited or surveyed by researchers, and there remains significant
room for discovery. The Southern Ocean is equally challenging, with large tracts remaining
unsurveyed [4]. Furthermore, much of the biological information available has resulted from
opportunistic visits and, therefore, is relatively patchy and typically presence only, enabling little
or no understanding of the mechanisms that drive species distributions [16]. Although collecting
more process-informed data is possible using novel sampling technologies (as detailed in the fol-
lowing section), these existing unstructured data (see Glossary) hold vital information that can
be extracted using state-of-the-art flexible statistical modelling frameworks.

A roadmap for better predictions in Antarctica
Consistently collect and report data
To monitor biodiversity change in a way that best informs biodiversity forecasts in Antarctica, re-
searchers must collect, archive, and share new data in a standardised manner, including spatially
and temporally explicit metadata [17]. Consistent data structure and format, which results from
such approaches, reduces information loss when incorporating data from different monitoring pro-
grams and research groups into models [18]. Biodiversity observatory networks, such as Group
on Earth Observations Biodiversity Observation Network (GEO BON) and Genomic Observatories
Meta-Database (GEOME), can have a key role in such initiatives by promoting the coordination
and delivery of standardised biodiversity and ecosystem services data [18,19]. Such a network to
supplement biodiversity data already exists for the Southern Ocean [the Southern Ocean Observing
System (SOOSi)], and one for terrestrial communities is being proposed by the Antarctic Near-shore
and Terrestrial Observation System (ANTOS) [20]. Although cataloguing the diversity of species
across different habitats in Antarctica remains an important task, repeated sampling of key species
or communities at the same locations will bring benefits for the quantification of trends and drivers.

Leverage novel technologies to improve data coverage
Remote sensing and environmental DNA (eDNA) offer promising opportunities to overcome the
logistical limitations of traditional sampling in Antarctica and expand the scope of what is possible.
2 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx

https://twitter.com/gabkoerich
https://twitter.com/jdtonkin
CellPress logo


Glossary
Correlative model: model describing
biological states, including species dis-
tributions, via statistical relationships
between the biological state and the
environment.
Ensemble forecasting: combination/
averaging of different model predictions;
widely used in species distribution
models.
Forecast skill: how precise the pre-
dictions of a model are.
Hierarchical model: in a general
sense, a model with conditional depen-
dencies between different levels. These
levels are often submodels, either data,
process, or parameter models. Hierar-
chical models can be both frequentist
and Bayesian. A hierarchical model can
also be amodel for nested data, inwhich
parameters vary among groups and,
thus, the model aims to simulate this
variation probabilistically; often named a
‘mixed-effects’ model.
Hybrid model: model that combines
two different submodels, often based on
different data types, to predict species
distributions. These models can either
be developed sequentially or link differ-
ent submodels, in which at least one
model is process based.
Integrated population model:
models that unify several data sets to
estimate population dynamics and/or
demographic rates.
Integrated species distribution
model: models that combine multiple
data sets via data integration to estimate
species climatic envelopes (i.e., multiple
observation models).
Joint likelihood: integrates different
calculated likelihoods into a single esti-
mator (e.g., the latent state) to infer a
shared set of parameters. Likelihoods,
functions describing the probability of
the data according to the set of param-
eters from a chosen model, can be cal-
culated via point process models.
Latent state: property that cannot be
directly observed and, thus, is inferred
through a mathematical model, such as
species distributions.
Point process model: distribution of
points in a determined space, in which
the probability of a point arising in a
determined location is independent, and
determined by the intensity of the
underlying process (i.e., the density of
points in a certain location). A point pro-
cess model is a type of state-space
model (and, therefore, a type of
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For example, satellite imagery can be used to monitor some biological communities in near-real
time, providing a continuous measure in space of habitat structure and extent, with on-site mea-
surements being used to validate and complement satellite data [21]. For biological variables that
require in situ measurements (e.g., community composition), remote sensing can extrapolate
from point data to larger scales [22]. In Antarctica, very high-resolution (VHR) satellite images
are enabling the non-invasive monitoring of penguins andmarine mammals at large spatial scales
[23,24] (Box 1). Although remote sensing is more limited in its ability to detect smaller life forms,
efforts are underway in Antarctica to understand microbial mat communities and terrestrial veg-
etation by using multispectral satellite and drone imagery [25–27].

Autonomous devices that can remotely collect and analyse eDNA offer further exciting opportunities
for Antarctic biodiversity assessment in hard-to-reach areas and periods, including monitoring for
non-native species [28]. Although eDNAmethods have only recently been applied to Antarctic sys-
tems (e.g., [29,30]), major collaborative research programmes, such as New Zealand’s Antarctic
Science Platformii, are combining genomic sequencing and whole-ecosystem analysis to under-
stand biogeographic processes. Moreover, the Antarctic Treaty encourages the exchange and
sharing of scientific observations and results, and the Scientific Committee on Antarctic Research
(SCAR) has supported collaborative efforts that collect and share eDNA samples (e.g., the Antarctic
Genetic Archiveiii) and data (e.g., the SCAR Antarctic Biodiversity Portaliv or GenBank). To circum-
vent the challenges of discerning contemporary from ancient diversity signals in the dry, cold
Antarctic, companion approaches, such as eRNA [31], could be used. However, the current
paucity of genetic reference data for many Antarctic taxa (particularly invertebrates, plants, and
fungi) precludes the reliable identification of many species from eDNA [29,32], although it can still
be a useful tool for broad-scale diversity comparisons or for identifying the presence of well-
studied vertebrates.

Although ongoing data collection efforts are essential to advance Antarctic forecasts, historical
data continues to hold value for elucidating biodiversity responses to environmental change.
Machine learning tools, including natural language processing, are being developed to search
for, classify, and extract relevant information from historical publications more efficiently [33].
Despite the need for quality control of data, these tools can reduce the amount of time spent
by researchers synthesising data. However, gathered data will be highly patchy and incomplete,
and very limited in process information, due to the difficulties of sampling in Antarctica.
Fortunately, with the growing field of data-model integration [34], we are increasingly equipped
to ensure such valuable information can be put to better use.

Harness all forms of data to generate fit-for-purpose models
Generating fit-for-purpose forecasts of Antarctic biodiversity first requires weighing the modelling
objectives (e.g., near- versus long-term) against the limitations of available data. The ecological
modelling tools available, such as those focussed on predicting species distributions, vary from
drawing correlations between biodiversity patterns and the environment to simulating the under-
lying processes that drive the observed patterns [35–37]. Thus, a state-to-process continuum of
models and data exists [36], which is typically inversely correlated with data availability (Figure 1).

At one end of the state-to-process continuum are correlative models, which describe ecolog-
ical patterns making direct connections between the state of the ecological system (e.g., species
presence, presence/absence, or abundance) and what are considered to be the drivers [36,37].
Given their more lenient data requirements, these models are more widely applied but do not
capture the underlying dynamics of species responses to the environment, or other critical
mechanisms (Box 2) and, therefore, provide mixed results in their ability to predict range dynamics
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hierarchical model) because the intensity
defines the latent state.
Process-based/mechanistic model:
model describing a biological state, such
as species distributions, or rate through
causal links between processes and
observed patterns. For simplicity, we
use these terms interchangeably, but
some have argued that these two terms
represent different levels of complexity
[35].
State-space model: model compris-
ing a true (latent or hidden) state and an
observation model describing the data
generated by the latent state. A state-
space model is hierarchical in the sense
that the latent state (e.g., distribution)
conditions the observation (occurrence
of individuals) of the data. The term
‘hidden process model’ is also used to
refer to a state-space model.
Structured data: data derived from a
standardised sampling effort and design
with a defined protocol, making data
comparable across time and locations.
Transferability: ability of a model
trained in a certain set of conditions to
make accurate and precise predictions
under a different set of conditions.
Models can be transferred in space,
time, and taxonomy.
Unstructured data: data collected
without a defined sampling protocol.
Data are usually the result of opportu-
nistic sampling, without a standardised
effort and design.
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into novel conditions [38,39]. For instance, species distribution models (SDMs) link species ranges
with climatic envelopes and have been widely used in ecology [37]. In Antarctica, SDMs have
demonstrated that invasive terrestrial species will increasingly find suitable habitats in the Antarctic
Peninsula under climate change [12]. SDMs have also identified important feeding areas of
seabirds and marine mammals to inform marine reserve delineations in sub-Antarctic islands
[40], and estimated climate sensitivities of different barnacle life stages [41]. However, research
using SDMs is typically focussed on more widely studied taxa, with, for instance, terrestrial Antarc-
tic species and marine invertebrates rarely modelled using SDMs (but see [42–44] for examples).
Although SDMs can incorporate data collected in either structured or unstructured forms, most
are built with unstructured presence-only data and, therefore, inferences are limited due to possible
sampling biases and observational uncertainty [45]. Methods have been developed to strengthen
the inference of correlative models, including combining different model predictions in ensemble
forecasts [46]. However, integrating data offers a way to bolster predictions by retaining the
individual strengths of different data sets [47].

The power of data integration to improve forecasts depends on the approach to integrate data
(Figure 1). The simplest method is to pool different data sets by assuming disparities are insignifi-
cant enough, reducing data sets to their lowest common denominator (e.g., abundance data
to presence-only) [47]. By contrast, linking different data sets while retaining their strengths and
uncertainties is possible using state-space models. The actual distribution of a species is an
unobservable phenomenon (i.e., a latent state) from which we receive snapshots of individual
occurrences, restrained in their location and time of collection [47]. In a state-space model, the
observations (occurrences) are separated from the underlying true dynamics of the system
(the latent state; here, the distribution). One such approach is to used integrated species distri-
bution models (IDMs), which use two key tools based on a state-space modelling framework to
integrate different forms of data: point process models and joint likelihood. Point process
models can merge different data sets of the same state, such as abundance data, to generate,
for example, a common point process of abundance [45]. Then, point process models from
different data types (e.g., presence-only and presence–absence) can be linked via joint likelihood
because these share a common latent state (the distribution) [48]. By integrating different data
types and sources, IDMs reduce biases and increase the predictive performance of correlative
models [45]. Joint-likelihood approaches can also be used to infer important ecological parameters
[47]. For instance, integrated population models were used to estimate survival and fecundity
(vital rates) of emperor penguins (Aptenodytes forsteri) through the combination of state-space
models of population counts and estimated likelihoods of demographic data (capture–recapture
and number of breeders) [49]. These joint-likelihoods were then integrated into a hierarchical
model to quantify climate-change threats to emperor penguins [49].

Hierarchicalmodels offer the flexibility needed to overcomemany of the diverse challenges associated
with Antarctic biodiversity data. For example, they can borrow strength across species by leveraging
data from abundant species to estimate vital rates of rarer species [37]. Thus, hierarchical models
(often Bayesian) can provide a framework to incorporate different types of model and data, fill data
gaps, and estimate important parameters on ecological processes driving species distributions
[37,50]. Furthermore, the iterative nature of Bayesian methods (i.e., models can be updated as
new data arrives) makes them particularly well suited to forecasts in Antarctica [34], where currently
sparse data are set to rapidly expand due to emerging data capture technologies (Box 3).

At the other end of the state-process continuum are process-based models (PBMs). These
models explicitly simulate the processes driving the range and population dynamics of species
and, thus, are able to establish causal relationships between the underlying biology of a species
4 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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Box 1. Monitoring penguins and seals from space

Although data are limited for most Antarctic species, some groups have been the target of various surveys and provide examples of how novel technologies can be used
to cost-effectivelymonitor population trends on greater spatial and temporal scales [24]. The application of VHR imagery (0.31–0.60m spatial resolution) was first used in
Antarctica for censuses of emperor penguins (Aptenodytes forsteri) in 2007; since then, this technology has further supported the estimation of breeding pairs of Adélie
(Pygoscelis adeliae) and chinstrap (Pygoscelis antarctica) penguins [24] (Figure I). Combined with long-term mark–recapture data, spatial distribution of colonies
assessed via VHR imagery was used to build demographic and metapopulation models of how future changes in sea ice will affect emperor penguin colonies
[59,60]. Outputs from these models demonstrated that human decisions on greenhouse gas emissions can directly affect extinction rates of emperor penguin colonies
in Antarctica: ~80% quasi extinction was predicted under business-as-usual emissions, in contrast to 44% if the Paris Agreement 2°C target is met [59].

Satellite imagery does not comewithout challenges, particularly in the amount of information that needs to be processed. To overcome this challenge, the ‘Satellites over
Seals’ project recruited citizen scientists to help detect and enumerate colonies of Weddell seals (Leptonychotes weddellii) in large numbers of VHR images across
Antarctica [23]. Besides increasing the spatial range of data collection of this species, this approach was also able to expand the historical data series to regions where
traditional sampling was intermittent or rare [61]. In doing so, the project achieved the first-ever global distribution of Weddell seals and determined that the population
size is smaller than previously estimated [23]. Models based on these data, together with crabeater seal (Lobodon carcinophaga) data also collected from VHR images,
revealed a higher sensitivity of crabeaters to climate change due to their reliance on sea ice for breeding and krill for their diet [62,63].

These examples demonstrate the possibilities that novel sampling methodologies present for collecting important information on Antarctic ice-dependent vertebrate
populations, and highlight their potential utility for monitoring biodiversity in other remote ecosystems [24]. However, the collection of these demographic data from
satellite imagery was only possible due to knowledge of the life histories of these species, and considerable work to correct counts and ground-truth data [23]. Thus,
the application of VHR for other taxa needs careful consideration of phenologies and life history traits.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Remote sensing is being used to census Antarctic populations. Map of Antarctica showing the locations of data collected through very high-resolution
(VHR) satellite imagery for emperor (Aptenodytes forsteri; blue points) and Adélie penguins (Pygoscelis adeliae; purple points), and Weddell seals (Leptonychotes
weddellii; pink points). (A) The location of individual data points on the tip of the Antarctic Peninsula. Data from [64] (Adélie penguins), [65] (emperor penguins), and
[23] (Weddell seals). Photos reproduced with permission from M. LaRue.
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and their environment [5]. Therefore, PBMs are better at overcoming the challenge of
nonstationarity, which hampers the performance of correlative models, and their transferability
to novel conditions, such as those expected in Antarctica under climate change, is likely higher
[37] (Box 2). Characterising climate change impacts on species distributions will require
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 5
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Figure 1. Modelling across the state-to-process continuum. A wide range of approaches are available to leverage
diverse data types in forecast development. Dark-grey arrows depict the modelling workflow: the two main data sources
(unstructured and structured) feed state and process data (categories according to Urban et al. [55]), which are then used
in correlative and process-based models. Hybrid models are the combination of process-based and correlative models
(thin-grey arrows). Coloured arrows demonstrate how data can be combined (solid arrows) and inferred (dashed arrows)
to estimate another type of data; most move up in the state-to-process continuum (dashed light-grey arrow), except for
data pooling (yellow arrows). Integrated species distribution models (IDMs) are developed using the combination of
different forms of the same data through point process models (e.g., opportunistic occurrence data and presence surveys;
blue arrow), or by combining different state variables via joint likelihood (green arrows) [45,47]. Joint likelihood can also be
used to complement presence–absence data with presence-only in a multispecies model (example in [47]). Hierarchical
models (pink arrows) can infer a range of process parameters (examples taken from [37,45,47]). Inverse modelling (dark-
pink arrow) has been used to estimate physiological parameters from presence–absence data [37,54]. Combining and
inferring data are not limited to the example connections depicted. *Position does not reflect the state-to-process continuum;
IDMs are purely correlative. **Transferability of models (dashed light arrow) is expected to increase as models become more
process informed. In the case of IDMs, data integration methods can increase transferability.

Trends in Ecology & Evolution
incorporating particular features of Antarctic ecosystems, such as the limited connectivity be-
tween terrestrial communities [3]. Changes in environmental conditions alone are unlikely the
best predictor of future species ranges if species are incapable of reaching new suitable habitats,
or withstanding novel biotic interactions, for example. However, these models are hungry for data
that are less frequently collected and, thus, PBMs of Antarctic species are limited in number.
While there are exceptions [51], marine species dominate this space. For instance, dynamic en-
ergy budget models were parameterised to describe the life cycle of Laternula elliptica, a large
6 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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Box 2. Toward more mechanistic forecasts of Antarctic biodiversity

Models forecasting biodiversity change often ignore underlying mechanisms, which can be broadly classified into six major categories: (i) species interactions; (ii) demography,
life history, and phenology; (iii) responses to environmental variation; (iv) evolutionary potential and population differentiation; (v) physiology; and (vi) dispersal, colonisation, and
range dynamics (Figure I) [55]. Incorporating these mechanisms into models can help to improve forecasts of responses to climate change, particularly as conditions go beyond
those that have been observed previously [55]. This challenge of nonstationarity particularly hampers correlative approaches, which rely on associations between historical states
and not necessarily the underlying processes that drive those states [66]. By directly simulating biological processes, process-based models are also more straightforward to
interpret and interrogate [35], which stands in contrast to the ‘black-box’ nature of machine learning models, helping with dissemination to managers and policymakers.

Some mechanisms are more fully captured by existing studies in Antarctica than are others. For instance, detailed studies have been carried out on the demographic
rates of large, charismatic, and visible-from-space species (Figure IB), helping to identify threats from climate change to critical life-history stages, such as emperor
penguins [67]. However, less is known about the diverse invertebrate fauna of Antarctica, both terrestrial and marine, and, although demographic parameters can
often be estimated from less informative data (see Figure 1 in the main text), other parameters may be less straightforward. Thus, the Antarctic data challenge
applies equally, if not more, to mechanistic data.

To mechanistically forecast Antarctic biodiversity will require a renewed effort to target basic natural history information and fill many of these data gaps. One particularly
important threat to Antarctic biodiversity is the increasing rates of non-native species arrival and establishment [68]. Thus, incorporating novel biotic interactions
(Figure IA) into models will be increasingly important to predict the potential effects of invaders on resident biodiversity. Beyond surviving in place in response to climate
change, which can be captured in models by mechanisms reflecting physiological tolerances (Figure IE), local environmental preferences (Figure IC), and evolutionary
potential and local adaptation [7] (Figure ID), endemic Antarctic species will need to move in space to overcome climate change threats. Therefore, integrating dispersal
rates of species into mechanistic forecasts is increasingly important (Figure IF). Despite the challenges associated with collecting these data in Antarctica, the potential
gains in our ability to anticipate and prevent biodiversity and ecosystem functionality decline cannot be discounted.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Ecological mechanisms are increasingly important in Antarctic biodiversity forecasts. (A) The Antarctic Peninsula is a hotbed for the arrival of
invasive species (points represent known distribution of non-native species; data from [68]), creating novel biotic interactions for resident biota. (B) Demographic
models are increasingly being applied to understand responses of different penguin life stages to climate change [59,60,67] (gentoo penguins pictured). (C) Remote
sensing using hyperspectral imaging identifies locations with high concentrations of microbial mats in stream channels in the McMurdo Dry Valleys (colours represent
band absorption identifying high concentrations of microbial mats) [26]. (D) Sampling to understand the genetic variation of soil communities on Deception Island.
(E) Dynamic Energy Budget models are one way to incorporate physiology into forecasts (here of the limpet Nacella concinna) [69]. (F) Dispersal is an important
mechanism under climate change with the kelp Durvillaea antarctica (pictured) increasingly reaching Antarctica [9]. Photos reproduced with permission from
M. LaRue (B); J. Levy (C); C. Fraser (D); M. Sissini (E); and C. Fraser (F).
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Outstanding questions
How process-informed do models need
to be to provide accurate forecasts in
Antarctica? Few studies in fact test how
model complexity affects forecast skill
gain, and research exploring model
parsimony and uncertainty is necessary
to determine the most cost-effective
approaches, both in data collection and
modelling effort. This challenge is particu-
larly important given the extreme nature
of Antarctica and the rate of potential
change in the environment that climate
change will bring.

How can we most efficiently process
the increasing volume of data being
collected? Collecting new Antarctic data
and rescuing historical data will likely
lead to vast volumes of information, and
correctly managing and interpreting
data require the use of tools that
most ecologists are not familiar
with. The rapidly developing field
of ecological synthesis provides
an exciting framework to explore how
these data can help uncover drivers
and patterns of Antarctic biodiversity.

What are the limits of remote sensing
tools for Antarctica? Most terrestrial
species in Antarctica are too small for
satellite data, except for photosyn-
thetic organisms, which can be de-
tected using multispectral imaging,
but remote sensing can provide con-
text around environmental constraints
and be used to monitor the extent of
communities. How much more spatial
resolution can be achieved to allow
better measurements of such commu-
nities and environmental conditions at
finer scales remains to be seen.

How will improvements in climate
models and instrumental records aid
biodiversity models? Higher resolution
at finer scales is necessary to better
predict changes in microenvironments,
particularly important for many
microscopic communities in Antarctica.
The importance of extreme weather
events in driving biological communities
to alternative stable states is increasingly
being recognised and, thus, having this
information to incorporate into models
should be another target.

Box 3. Toward robust iterative ecological forecasts

Although data requirements often dictate model choice, forecast skill, uncertainty, and transferability of models should be
front of mind when determining how appropriate a model is [34,70]. Temporal and spatial forecast horizons can, in turn,
help to determine the limits of predictions (i.e., how far out robust predictions can be made) [71]. Knowing such limits is
imperative for supporting decision-making in the near- and long-term [70]. Arguably most important, however, is that
predictions should account for, clearly quantify, and communicate uncertainty, a critical step in helping managers make
informed decisions [34]. Uncertainty can arise from a range of sources, including data collection, the initial conditions
chosen for the model, model structure, parameter estimation, and stochasticity [34]. In Antarctica, one particularly important
source of uncertainty is driver uncertainty in the form of climate projections, because these are hampered by a shortage of
instrumental records from the continent and the Southern Ocean [72].

Capturing, partitioning, and understanding the main sources of uncertainty in models and associated data are jobs particularly
well suited to Bayesian hierarchical models [34]. Such models are increasingly being applied to near-term ecological forecasts
that form an iterative forecast-analysis cycle, in which predictions are updated iteratively as new evidence ismade available [34].
This iterative framework stands in stark contrast to most forecasts, which are performed once and then forgotten. Ecological
forecasts can be more widely embedded in an iterative cycle that incorporates adaptive management to sequentially reduce
uncertainties [34]. The immediate feedback available from iterative near-term forecasting offers a distinct advantage in our
ability to not only understand the system, but also explore the immediate effects of decision-making on the near-term state
of the system [34]. With remotely sensed data becoming increasingly available in Antarctica, automated iterative near-term
ecological forecasts are well within the scope of research in the near future. In addition to data and modelling capabilities,
we are seeing rapid developments in the cyberinfrastructure required to support such systems [34].
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suspension-feeding bivalve, identifying adaptations to low temperatures and long starvation that
make this species sensitive to changes in seasonal patterns of food abundance [52]. Important
fisheries, such as the Antarctic toothfish (Dissostichus mawsoni), use historic catch data to esti-
mate parameters, such as mortality and growth, to assess maximum sustainable yield using age-
structured process-based population models (e.g., [53]). Most of these PBMs are fitted via
forward parameterisation, in which direct measurements of a parameter, such as plant growth in
an experiment, are used to describe the relationship between the environment and a mechanism
[54]. Inferring parameters inversely (inverse modelling; using PBMs to estimate parameters based
on observations of species) is also possible as a way to increase process information [37,54].

Hybrid models offer another key solution to the process data scarcity challenge by combining
the strengths of both correlative and mechanistic models, thereby helping to maintain the
elevated model transferability of PBMs into novel environmental states [38,55,56]. Building a
hybrid model can be as simple as using one model output as a limiting factor in another model
[36]. This works in both directions: a correlative model can be used to estimate habitat suitability
and then a PBM uses this information to build predictions; alternatively, spatial variables with
mechanistic information can be used as input in correlative models [56]. Models can also be
generated simultaneously and integrated in a wider 'metamodel', based on a Bayesian hierarchical
framework, in which predictions are constrained by the different submodels [57]. In Antarctica,
Fabri-Ruiz et al. compared current and future predictions of a correlative and a dynamic energy
budget model of a sea urchin (Sterechinus neumayeri) and demonstrated how one model can
in fact complement the other, and how the mechanistic model forecasts were more biologically
realistic [58]. Therefore, combining both modelling techniques via a hybrid framework can
incorporate in forecasts both unstructured, opportunistic range data and parameters reflecting
the specific mechanistic adaptations of Antarctic species that will drive their responses to
climate change.

Concluding remarks
Improved forecasts of Antarctic biodiversity are necessary to inform decision-making, but are
impaired by the characteristics of the data. We have illustrated how leveraging emerging data
capture and integration tools, and state-of-the-art modelling frameworks, can improve such pre-
dictions. Traditional correlative modelling can greatly benefit from combining data sets to develop
8 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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integrated species distribution models. When data on processes are necessary to overcome
issues of model transferability into future environmental conditions, data integration can help
infer mechanisms, and hybrid models can merge the strengths of both correlative and PBMs.
Although integrating data into flexible and hybrid modelling frameworks is still relatively
unexplored in Antarctica, the approach offers exciting possibilities for addressing a range of ques-
tions. Indeed, Antarctic science represents many opportunities for improving the way we achieve
ecological forecasts in challenging circumstances.

Although our recommendations focus on better use of existing data and tools as well as
increased monitoring efforts, they do not negate the need for greater understanding of biological
and ecological processes to improve our ability to mechanistically forecast species populations.
Future data collection efforts should focus on informing iterative forecasts (Box 3), and the imple-
mentation of international observation networks (as proposed by ANTOS and SOOS) make the
ultimate goal of forecasting the future of Antarctic life with well-defined uncertainties attainable.
At the national level, funding and support for establishing observation networks and, critically,
regular resurveys and long-term monitoring should be prioritised. Challenges remain (see
Outstanding questions), but scientists, managers, and policymakers cannot afford to let perfect
be the enemy of good. We have the opportunity to learn by doing [34], and to optimise the use
of data and tools that are in hand to guide science-based management of Antarctic biodiversity.
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