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Species interactions drive 
continuous assembly of freshwater 
communities in stochastic 
environments
Andrea Tabi 1,2,3*, Tadeu Siqueira 2 & Jonathan D. Tonkin 2,3

Understanding the factors driving the maintenance of long-term biodiversity in changing 
environments is essential for improving restoration and sustainability strategies in the face of 
global environmental change. Biodiversity is shaped by both niche and stochastic processes, 
however the strength of deterministic processes in unpredictable environmental regimes is highly 
debated. Since communities continuously change over time and space—species persist, disappear 
or (re)appear—understanding the drivers of species gains and losses from communities should 
inform us about whether niche or stochastic processes dominate community dynamics. Applying 
a nonparametric causal discovery approach to a 30-year time series containing annual abundances 
of benthic invertebrates across 66 locations in New Zealand rivers, we found a strong negative 
causal relationship between species gains and losses directly driven by predation indicating that 
niche processes dominate community dynamics. Despite the unpredictable nature of these system, 
environmental noise was only indirectly related to species gains and losses through altering life 
history trait distribution. Using a stochastic birth-death framework, we demonstrate that the negative 
relationship between species gains and losses can not emerge without strong niche processes. Our 
results showed that even in systems that are dominated by unpredictable environmental variability, 
species interactions drive continuous community assembly.

Keywords Biodiversity maintenance, Causal inference, Body size scaling, Stochastic modeling, Community 
assembly

Understanding the mechanisms underlying the long-term maintenance of biodiversity is essential for improving 
conservation efforts and preventing further biodiversity  loss1,2. Ecological communities change over time and 
through space as a function of numerous internal and external  processes3. In this continuous assembly process 
some species persist while others disappear (species losses) and (re)appear (species gains) over  time4,5 while 
maintaining local diversity. Various internal and external factors shape community assembly, therefore observing 
compositional changes over time might shed light on what factors drive assembly processes as well as how 
biodiversity is maintained in the face of environmental  change5.

The combination of two major mechanisms can lead to continuous community assembly; dispersal-assembly, 
whereby stochastic processes such as dispersal, random birth and death events  dominate6, and selection- or 
niche-based  assembly7, whereby species interactions drive community assembly. Ecological communities are 
on the spectrum between niche-based and dispersal-based regimes, where their relative positions according to 
analytic arguments depend on population sizes and the variability of the  environment8. Under highly stochastic 
environmental conditions, such as in river ecosystems driven by cycles of flood and drought disturbances, 
community assembly is often assumed to be dominated by external factors such as hydrologic variability that 
override biotic control of  communities9,10. However, empirical evidence suggests that species interactions in 
stream communities, such as competition, predation and herbivory, exert important effects on population and 
community  dynamics11–13. Species traits such as average body size, voltinism and feeding habits (e.g. predation) 
have been extensively shown to influence the dynamics of benthic  communities14. In particular, benthic predators 
often influence the evolution of prey trait distributions. Predatory effects include increase in prey body size and 
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change in body shape, increase in movement  speed15,16, or change in voltinism such that prey species grow more 
slowly in the presence of  predators17.

In order to empirically detect the driving force of ecological communities, we investigate the temporal rela-
tionship between species (re)appearances (gains) and disappearances (losses) in the community. Community 
assembly driven primarily by stochastic processes should render species gains and losses independent, uncor-
related events. However, it is possible that the same external factors drive local population disappearances or 
(re)appearances, potentially leading to correlated gain-loss processes—also known as the confounding  effect18. 
By contrast, niche-based assembly theory asserts that species diversity arises from ecological selection (i.e. par-
tially or non-overlapping niches). Species fitness differences and interactions are the main drivers of assembly 
that hypothetically might lead to not only correlated but causally-related species gain-loss  events19. To test this 
cause-effect relationship, we use time-series data of benthic invertebrate communities from 66 locations across 
New Zealand recorded between 1990 and 2019 (Fig 1a). River flow regimes are a dominant external force in 
regulating stream  biodiversity20–22. Therefore, we couple these community data with continuously monitored 
river flow data and species traits to generate causal linkages. Due to its maritime climate, New Zealand running 
waters are highly unpredictable and aseasonal relative to continental  systems23,24. First, we establish our causal 
hypothesis for how species gains and losses are related and how external processes, in the form of highly dynamic 
river flow regimes, regulate this connection. To discover these causal hypotheses, we employed a nonparametric 
causal discovery approach based on conditional independence  testing18,25. Since observational data are often 
confounded, they fail to establish cause-effect relationships. In this line, causal inference tools have been devel-
oped that allow us to infer causation from observational  data18,25. Then, based on the discovered causal links we 
use a stochastic dynamic model combined with scaling  theory26 to theoretically investigate what processes can 
potentially generate the observed cause-effect relationship between species gains and losses.

Results
Empirical results and causal hypothesis
Despite the highly unpredictable river flow regimes observed in these systems, we found clear evidence of 
deterministic forces structuring the benthic macroinvertebrate communities. The signal-to-noise ratio of river 
flow indicates that macroinvertebrate communities experience a highly stochastic environment in most rivers 
(Fig 1b,c). However, benthic communities showed relatively stable biodiversity patterns over time (Fig 2a–c)—we 
found that relative species richness increased only slightly, while species evenness and species turnover remained 
constant during the entire time period.

Species gains and losses—defined as the relative number of species gained and lost from one time period to the 
 next27,28—showed strong negative associations and high mutual dependence in all locations (Fig 2d, e). However, 
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Fig 1.  Sampling locations and river discharge in New Zealand. (a) Macroinvertebrate communities sampled 
annually across New Zealand rivers over 30 years at 66 sampling sites. (b) The signal-to-noise ratio (SNR) of 
river discharge time series indicate that New Zealand have rivers ranging from (c) aseasonal (left) to highly 
seasonal (right) discharge patterns.
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to gain cause-effect knowledge about the relationship between species gains and losses that could potentially point 
towards the importance of species interactions, a context must first be established. Specifically, we assume that 
this context incorporates stochastic processes such as environmental noise and dispersal along with other species 
traits that potentially affect species gains and losses in relation to assembly processes. Because species traits are 
naturally not independent of each other, but rather inter-related, graphical models are needed to establish causal 
relationships and accurately estimate effect sizes. This graphical model—also called as a causal hypothesis—can 
be constructed using expert knowledge or intuition or by means of causal discovery  algorithms18. Here we applied 
a causal discovery  algorithm29 on concatenated time series of each variable from all sampling sites in order to 
obtain a reliable average estimate of each causal link. Environmental noise was calculated from river flow  data30 
and species traits were measured as the community weighted mean (CWM) of body size, voltinism, dispersal, and 
predation (for details see Methods). The direct structural causal effects between two variables were quantified as 
partial Spearman’s correlation  coefficients18. The causal analysis indicated that species gains and losses are causally 
related, describing a fluctuating behavior (Fig. 3), which was partly driven by predation. The removal of predation 
from the causal analysis disconnects gains and losses from the rest of the graph, which indicates that predation 
is the only community trait directly connected to gain-loss cycles. Body size was strongly connected to all other 
species traits with similar effect sizes confirming its importance of body size in structuring communities. As 
expected, predation and dispersal affected body size distributions in opposite directions; predation led to larger 
average body sizes, while better dispersal abilities caused smaller average body sizes in the community. In turn, 
larger-bodied communities resulted in longer average generation time. Surprisingly, environmental noise from 
river flow was not directly related to species gains and losses, but slightly increased the average generation time 
in the community. We also tested the role of environmental noise in a causal model including species turnover 
(the sum of species gains and losses) to complement our analysis. The analysis showed no causal link between 
environmental noise and any other variable (Supporting Information Fig S6).
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Fig 2.  Community metrics. Macroinvertebrate communities were sampled annually across New Zealand rivers 
over 30 years at 66 sampling sites. (a) Communities show overall a slight increase in richness through time. (b) 
Species evenness was also unchanged through time. (c) Species identity changes in communities were steady 
over time with relatively high turnover rates. (d) Species gains and losses were negatively correlated in each 
community (measured as the Spearman’s correlation) (e) with various levels of mutual dependence (dashed 
orange lines indicate the average value).

Fig 3.  Causal graph. Causal relationships between species gains and losses, environmental noise (measured as 
the noise component of Fourier transform of river discharge) and community weighted mean (CWM) traits. 
Using causal discovery (PC algorithm) for time series data, results show that predation is the only variable that 
is directly linked to species gains and losses. Species gains and losses have a negative bidirectional relationship 
indicating the presence of cycles. Higher environmental noise slightly increases the mean generation time 
(voltinism) in the community. Higher predation leads to larger average body sizes and higher dispersal tend to 
lead to smaller body sizes. Larger average body sizes increases the average generation time.
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Theoretical results
Based on the findings of the causal inference analysis, we can now establish a simple theoretical investigation 
in order to determine how the observed patterns between species gains and losses were generated given the 
relative strength of biotic interactions and stochastic processes. We generated synthetic communities combin-
ing a stochastic dynamic model with metabolic scaling  theory26,31. Specifically, we defined stochastic popula-
tion dynamics as a birth-death process, where new individuals are gained by B(ni) = qi + ni · �i · (1− ni/Ki) , 
where qi is density-independent immigration rate and �i is the intrinsic growth rate. Species lose individuals as 
D(ni) = di · ni + ni ·�(aij · nj/Ki) , where di is death rate, Ki is the carrying capacity and aij is the interaction 
coefficient including competitive and predator-prey interactions (see Methods for details). First, we randomly 
generated interaction matrices, where predation and competition coefficients were determined based on body 
size  scaling32,33. Second, dispersal processes were mimicked by the immigration rate ( qi ), which was set according 
to the discovered relationship between body size and dispersal in the causal analysis. The intrinsic growth rates 
( �i = G−1

i  , G generation time) were also set according to the discovered relationship between size and voltinism. 
Based on our empirical analysis, environmental noise affected only voltinism, which was incorporated as external 
noise ( σi ) added to the intrinsic growth rates ( �i ) at each time step. All other parameters including immigration 
rate, death rate, carrying capacity and interaction coefficients were kept constant in the model (see Methods and 
Fig S5). Then, each community was sampled over 30 times by equal intervals under different levels of average 
interaction strengths, µ = {0, 0.1, 0.5, 1, 1.5} , defined as the mean value of all interspecific interaction coefficients. 
Note that interaction matrices contain both positive and negative coefficients and pairwise interactions are asym-
metric. The carrying capacity ( Ki ) was also scaled with body size and we assumed the same death rate ( di ) for 
each species stemming from external sources such as flooding. All community started from a regional species 
pool with 55 species that is median value of empirical observations (Fig S4). The theoretical analysis confirmed 
that the observed empirical patterns are driven by strong species interactions. When the average interaction 
strengths are higher, the relationship between species gain and losses are stronger compared to very low level of 
interspecific interactions (Fig 4a, b). Relative richness, evenness and turnover approached the observed values 
when interactions were stronger (Fig 4c, d). Stochasticity alone, i.e. where the average interactions strength is 
zero, leads to the correlation between species gains and losses approaching zero as well as to high relative rich-
ness, highly-even species distributions with low species turnover. As expected, imposing stronger interactions 
reduces local species richness and species evenness and increases species turnover moving all metrics closer to 
the observed values.

Discussion
Both empirical and theoretical findings suggest that species gains and losses are causally-related driven by 
strong biotic interactions in these stochastic environments. Species gains and losses empirically showed nega-
tive association, similarly to previous  observations28,34. The relationship between species gains and losses is the 
product of the combination of interaction structure and stochastic processes, whereby a small fraction of species 
persisted over time, another fraction of species had an intermediate temporal presence and the remainder species 
rarely appeared potentially resulting from stochastic processes and weak competitive abilities. Our theoretical 
predictions based on body size scaling relationships also supported that biotic interactions are needed to recon-
struct the observed fluctuating relationship between species gains and losses. The role of biotic interactions in 
the dynamics of river ecosystems have been long debated because of the strong external forcing from cycles of 
floods and  droughts9,10 and are therefore deemed to be highly-context  dependent14. For instance, while previous 
work found that flow variability breaks down competitive  hierarchies11 and predator–prey  interactions35, ben-
thic predators have been suggested to have cascading effects on altering prey abundance, size or age structure, 
behavior, and  morphology14. Our causal inference analysis identified predatory effects to be partly responsible 
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Fig 4.  Synthetic analysis of continuous community assembly. Communities assuming stochastic birth-death 
processes were generated with different levels of interaction strengths over 30 sampling events repeated 100 
times for each parameter level. Interaction strengths refer to the average value of the non-diagonal elements of 
the interaction matrix. The purple dashed line indicates the empirical values. Panel (a) shows the Spearman’s 
correlation coefficient and panel (b) depicts the mutual information between species gains and losses time 
series. Stronger species interactions caused a more stronger negative association between gains and losses time 
series and higher mutual information. (c) Species richness is the highest when species do not interact and 
decreased with interaction strength. Similarly, interaction strength decreased (d) species evenness and increased 
(e) species turnover.
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for the observed continuous community assembly reflected by species gains and losses. Second, the synthetic 
analysis strongly supported the role of predator-prey and competitive interactions shaping community dynamics 
closely matching the empirical observations.

We showed that environmental stochasticity affects the number of generations per year (voltinism), i.e. 
communities under higher environmental noise comprised more species with longer generation time. However, 
more precise information on changes in voltinism in low and high environmental noise requires further inves-
tigation with measured species trait distributions. We observed a limited effect of environmental noise on the 
communities in these dynamic rivers. This weak influence is expected in living systems due to species adapting 
to the fluctuation structure of their environment (e.g. variances and correlations) given that it remains constant 
over evolutionary  timescales36. In our case, the highly autocorrelated noise with relatively small or in some 
cases nonexistent characteristic signal present in stream flow measurements (Fig. 1b) suggests that species will 
have developed adaptive strategies such as bet  hedging37. For instance, most predatory species in our analysis 
were also generalists suggesting an adaptive feeding behavior to a constantly-changing environment. Due to its 
maritime climate and unpredictable flow regimes, New Zealand stream communities are a case in point of such 
adaptation, being highly generalist and  opportunistic23.

Our synthetic analysis generated predictions tightly coupled to the observed metrics. As expected, increasing 
internal constraints reduced the number of species present from the regional pool and reduced evenness due to 
stronger predation and competitive exclusion within the communities. The presence of internal structure led 
some species to persist and some species to disappear and reappear according to stochastic events, which creates 
the observed fluctuations of species gains and losses. When species weakly interact, more species were included 
in the local communities from the regional species pool leading to highly even species distributions and low 
species turnover, which rendered species disappearances and (re)appearances independent events confirming 
previous  expectations19. The synthetic analysis also revealed that the discovered causal relationships among spe-
cies traits in stochastic model communities can be utilized to closely reproduce observed biodiversity patterns, 
without directly inferring species interactions coefficients from empirical data. In our theoretical investigation, 
we assumed that biological rates and interactions vary as a function of species body sizes. Body size, as a master 
trait, is known to scale with other species traits such as dispersal  ability38,  predation39, and  voltinism40. Here we 
empirically demonstrated that body size not only correlates with, but is causally-related to other species traits and 
biological processes in stream communities. Predation and dispersal changed body size distribution in benthic 
communities corroborating previous  observations15,38. The increase in average body sizes can be explained by 
size-selective predation of smaller-bodied prey species. Therefore, we assumed that macroinvertebrate communi-
ties are size-structured and likely governed primarily by predator-prey and competitive interactions, however, 
other interactions types such as facilitation might have an important role in macroinvertebrate  communities41. 
For instance, aggregation, a form of facilitation, reduces the individual risk of predation and can benefit indi-
viduals by recycling each other’s  byproducts42. Nevertheless, the causal association between predators and gains 
and losses, and the lack of any other direct association, indicates a dominant role of antagonistic interactions in 
structuring these communities.

In this work, we showed that species occurrence information allow the detection of mechanisms driving com-
munity dynamics by combining causal inference analysis with theoretical models. Following a causal discovery 
approach, we identified causal links between species traits, environmental noise and internal processes. Then, 
we used the information obtained from causal discovery to calibrate and parameterize a stochastic trait-based 
dynamical model. Given the high match between the theoretical results and observations, we believe that our 
work provides a future avenue towards a data-driven general framework to investigate continuous community 
assembly.

Methods
Data
Overall, we analyzed 1795 communities from 66 geographical sites (Fig. 1) across New Zealand comprising 
population abundance data from more than 114 macroinvertebrate taxa sampled from 1990 to 2019. These 
surveys were conducted for New Zealand’s National River Water Quality Network (NRWQN)43. Samples were 
collected following standardized  protocols43 and under baseflow conditions. Seven Surber samples ( 0.1m2 and 
250 µ m mesh net) were collected on all sampling occasions during which macroinvertebrates were removed 
from a 0.1 m2 area in the sampler down to a depth of ca. 10 cm and from as many substrate types as possible. 
Individuals were later identified in the laboratory, to the lowest practicable taxonomic  level44. The information 
on functional traits related to morphology, life-history, dispersal strategies and resource acquisition methods 
was obtained from the New Zealand freshwater macroinvertebrate trait database prepared by NIWA, which has 
been explicitly developed for New Zealand’s standardised freshwater macroinvertebrate sampling  protocols45. 
Functional traits were fuzzy-coded from 0 to  346 and converted to a single value for each taxon using weighted 
averages. Daily average river discharge data (l/s) at each sampling location collected from NIWA database. The 
time series of environmental noise was obtained as the root mean squared noise, or amplitude of all noncharac-
teristic frequencies of the daily average time series of each year using FFT (Fast Fourier Transform). Flow data 
were log10-transformed and normalised by the average discharge across the entire period at each  site30.

Species gains and losses were calculated as the number of species gained and lost from previous to next year 
divided by the total number of species observed in both  years27,28. Furthermore, we used traditional biodiversity 
metrics that capture important structural aspects of communities such as number of species at given time com-
pared to the number of species occurred in that given location over the studied period (relative richness), species 
abundance distribution (evenness) and species identity change over time (species turnover). Species evenness 
(J) is a description of the distribution of species abundances within a community and is defined as the Shannon 
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information entropy divided by the maximum entropy of relative species abundances: J = −�S
i=1Pilog[Pi]/logS , 

where Pi is the relative abundance of species i. Species turnover—defined as the relative number of species 
gained and lost from one time period to the next — describes local compositional changes over  time27,28. The 
relationship between species gain-loss time-series were quantified by Spearman’s correlation coefficient and 
normalised mutual information. Mutual information is a nonparametric and non-monotonic similarity metric 
between two random variables and calculated as MIXY = H(X)+H(Y)−H(X,Y) , where H denotes the Shan-
non entropy. The MIXY was then normalised by the maximum mutual information : NMIXY = MIXY/MImax

XY  , 
where MImax

XY = min(H(X),H(Y)).

Causal discovery and causal effects
In order to infer causal relationships from observational time series, a first step involves the construction a graphi-
cal causal model, i.e. DAG (directed acyclic graph), among the variables in question referred to as causal discov-
ery18. Causal discovery algorithms based on conditional independence testing (or constraint-based approaches) 
have four major steps: first, we start with a full undirected graph on n nodes (variables), with edges between all 
nodes. Second, we test each pair of variables X and Y, and each set of other variables S. If X and Y variables are 
independent given S ( X ⊥⊥ Y |S ), the edge between X and Y should be removed. Third, we search for colliders 
(i.e. nodes that receive edges from at least two other nodes) by checking for conditional dependencies between 
independent variables where X ⊥⊥ Y  , but X  ⊥⊥ Y |S . Lastly, we orient the remaining undirected edges (if pos-
sible) by consistency with already-oriented edges. We applied the PC (Peter-Clark) algorithm for time series 
 data29,47. In order to obtain a general picture of the causal relationships among our variables and to gain statistical 
confidence, we combined each variable of all 66 sites into a single concatenated time  series48. All variables V were 
shifted with a time lag of τ = 1 (variables were first shifted then concatenated). The time lag corresponds to the 
average generation time of the macroinvertebrate species, where most species are uni- or plurivoltine (Fig S4). We 
did not include the time lagged version of the environmental noise in the causal model due to its high temporal 
autocorrelation (Fig. S1). Since, all variables were continuous random variables but from different distributions, 
nonparametric Spearman’s partial correlation test have been applied to test for conditional  independence49,50. The 
threshold for conditional independence tests were set to α = 5 · 10−4 based on Structural Hamming Distance 
(SHD)  analysis51,52. The SHD analysis counts the number of edge insertions, deletions and flips between two 
completed partially directed cyclic graphs (CPDAG)52, the PC algorithm generates a stable skeleton, but edge 
orientation can be dependent on the ordinality of the variables added to the  algorithm49. Therefore, we measured 
the SHD between two CPDAGs with randomly ordering the variables. This was repeated 5000 times in order to 
obtain the threshold ( α ) for the analysis that gives the most stable CPDAGs (with the smaller SHD) regardless of 
the order of variables (see Fig. S2). The window causal graph (Fig. S3), which covered all variables ( Vt and Vt+1 ), 
showed time consistency. The summary causal graphs (Fig. 3) which was deduced from the window causal graph 
and directly relate variables without time, gives an overview of the  relationships47. The effect sizes were calculated 
as partial correlation coefficients applying the corresponding adjustment sets based on the window causal graph.

Theoretical analysis
We defined the population dynamics as a birth-death  process8,53. The population birth B(n) and death D(n) rates 
are expressed as B(ni) = qi + ni · �i · (1− ni/Ki) and D(ni) = di · ni + ni ·�(aij · nj/Ki) . We consider that a 
community of species is characterized by an interaction matrix (A), whose elements ( aij ) define the direct per-
capita effect of a species j on the per-capita growth rate of a species i. Note that aij and aji are not the same. 
Interaction matrices were generated using scaling relationships based on species body masses: Mi = M0 · 10

ki 
with ki ∼ N(1, 0.3) and M0 = 1 . Competitive and predator-prey interaction coefficients were estimated as 
aij = a0M

si
i M

sj
j  with si = 2/3 and sj = 11/1232 or si = −3/4 and sj = 3/433, respectively. The interaction matrices 

with a certain average interaction strength (excluding the diagonal elements) were generated via one-dimensional 
optimisation process. The immigration rate ( qi ) scaled with body sizes n0 ·M

−1/4+ǫi
i  with added Gaussian noise 

N(0, 0.1) to the exponent, where n0 = 10 , which represent the noise resulting from dispersal processes (see Sup-
porting Information). The amount of noise added were set to simulate the observed values obtained from causal 
inference analysis. Note that dispersal abilities generally positively scale with body mass, however in our empirical 
analysis smaller macroinvertebrate species have better dispersal abilities. We added external noise (representing 
environmental fluctuations) by varying the intrinsic growth rates ( �i ) of all species at each time  step54. The 
intrinsic growth rates were scaled with body masses as �−1/4+σi

i  adding noise ( σi ) drawn from normal distribu-
tion N(0, 0.1) to the exponent. The intrinsic growth rates represent the inverse generation time, i.e. species with 
longer generation time have lower birth rates. The amount of noise added was set to simulate the observed values 
obtained from the causal inference analysis (see Supporting Information). Carrying capacities were calculated 
based on body size scaling as Ki = K0 ·M

−3/4+γi
i  , where γi is drawn from N(0, 0.1) and K0 = 103 . Death rates 

were uniformly set to 0.5 across all species. In each case, the fraction of predator species were set to 40% similar 
to observations (see Supporting Information). The state of the system can be characterized by the probability P 
of having n individuals at time t. The time evolution of the probability distribution is described by a differential 
equation called a master equation: dP(n,t)

dt
=

∑

i

{(D(ni + 1) · P(ni + 1, t)+ B(ni − 1) · P(ni − 1, t))− (B(ni)·

P(ni , t)+ D(ni) · P(ni , t))}
 . Communities were simulated using Gillespie’s  algorithm55. Simulations were run 

starting with 55 species representing the regional species pool across different levels of average interaction 
strengths, µ = {0.01, 0.1, 0.5, 1, 1.5} , each interaction strength was replicated 100 times. Each stochastic 
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simulation process was sampled over 30 times by equal time intervals. At each sampling event species identities 
and abundances were recorded.

Data availibility
Data and codes supporting the results are archived on Zenodo https:// zenodo. org/ recor ds/ 13734 864.
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