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Matrix community models for ecology and evolution
David A. Lytle1✉ and Jonathan D. Tonkin2,3,4

Ecological communities are shaped by biotic interactions as well as environmental forces, and both must be incorporated to obtain
models capable of forecasting realistic community dynamics. Many community models first specify pairwise biotic interactions and
then secondarily examine how extrinsic factors such as abiotic conditions affect species abundances. A disadvantage of this
approach is that the species interactions themselves are often environment and context specific, making parameterization difficult.
We propose an alternative approach, matrix community models (MCMs), which are sets of matrix population models linked by an
assumption of aggregate density dependence. MCMs incorporate detailed species autecology but are neutral with respect to
pairwise species interactions, instead allowing interactions to be revealed within the model structure. These model-revealed species
interactions, including competitive exclusion, facilitation, and interference competition, shape the distribution and abundance of
species within communities and generate empirically testable predictions about species interactions. We develop a framework for
building MCMs using vital rates in a stochastic, multispecies framework. Single-species matrix population models are connected via
an assumption of aggregate density dependence, pairwise species interactions are estimated with sensitivity analysis, and
community trajectories are analyzed under different environmental regimes using standard statistical tools and network analysis.
MCMs have the advantage that pairwise species interactions need not be specified a priori, and that mechanistic demographic-
environment linkages permit forecasting of community dynamics under novel, non-stationary environmental regimes. A challenge
is that species’ autecological vital rates, such as fecundity, growth and survivorship, must be measured under a diverse range of
environmental conditions to parameterize the models. We illustrate the approach with examples and discuss prospects for future
theoretical and empirical developments.
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INTRODUCTION
Species interactions occupy a central place in understanding the
distribution and abundance of species within ecological commu-
nities. For example, in Lotka-Volterra models1,2 and models
derived from this starting point, species are defined largely by
the way they interact with other species, via coefficients that
represent predation rates, competition, or mutualistic relation-
ships. This framework has yielded a rich body of ecological theory
that has been used to understand pairwise species interactions,
assembly and disassembly of communities, and the dynamics of
entire ecosystems. The study of species interactions has been one
of the cornerstones of modern ecological theory from the 20th
century forward3–5.
In practice, however, pairwise species interactions can be

challenging to quantify in both natural and laboratory settings.
While some well-known species interactions are strong (as measured
by interaction strength, the per-capita effect of one species on
another), most pairwise species interactions are in fact weak6. The
prevalence of weak interactions has been attributed variously to
omnivory, ontogenetic shifts in diet, and frequency-related shifts in
prey preference, among other mechanisms7,8. Analysis of full
communities is further highlighting the importance of community
context (where higher order interactions alter community
dynamics), environmental variability (effect of disturbance events
or different year-types), and seasonality (cyclical changes in food,
temperature, and other environmental factors) in altering the
strength and even the direction of pairwise species interactions9–12.
Indeed, the effects of pairwise interactions may fade or disappear
entirely in the context of complex multispecies communities13,14.

For ecologists striving to understand the distribution and
abundance of species and model complex communities, the
context-dependence of species interactions presents a conun-
drum – if the fundamental variates in models are refractory or
difficult to quantify, how can we accurately forecast community
dynamics into the future? As climate change and other anthro-
pogenic activities produce novel environments and community
arrangements15–17, how can we specify the correct values for the
species interaction coefficients these models depend on? Demo-
graphic models provide a framework for understanding the
distribution and abundance of species under changing environ-
mental conditions. While traditionally applied to single species,
demographic approaches such as matrix population models can
be applied to understanding whole communities. An advantage to
demographic models is that they permit a direct connection
between species’ vital rates – parameters related to reproduction
and survival – and population trajectories across a wide range of
environmental conditions. As we will show below, if we first begin
with well-defined demographic models that capture how co-
occurring species fluctuate in variable environments in a
community-wide density-dependent framework, we can estimate
species abundances and then infer how species interactions arise
as an emergent property of the system.

Species interactions are an outcome – interaction
neutral models
If pairwise species interactions are so fickle, then why not leave
them out of community models entirely, or at least omit them
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from initial model parameterization? This is the “interaction
neutral” perspective, where species interactions are omitted from
model structure and then inferred later from model output. In
model building, our first and most important order of business is
to carefully parameterize how individual species interact with their
abiotic environments, under a variety of environmental condi-
tions, in terms of growth, survivorship, fecundity, and other
relevant vital rates (Fig. 1). Species are then linked together by a
general assumption of aggregate density dependence which
allows them to compete for a common resource, such as space or
total resources available to all species combined. Species
interactions are latent in the model, because even though species
compete implicitly for some finite resource, pairwise species
interactions – such as competitive exclusion, facilitation, and
interference competition – are not specified a priori in the model
structure. If they are of interest, species interactions are instead
estimated post hoc from sensitivity analysis of the model itself,
producing estimates of interaction strengths under a variety of
environmental regimes and community contexts. In this sense,
species interactions are treated as an epiphenomenon of species
living together in a finite world that experiences a constantly
changing set of environmental conditions. Species interactions are
an outcome of these processes, not a characteristic biological
attribute of the organisms18.

Matrix community models
Matrix community models (MCMs) provide a useful demographic
framework for understanding the population dynamics and
abundance of species under changing environmental conditions.
Matrix community models are sets of single-species matrix
population models that are linked together to capture
community-wide dynamics. In the treatment below, we develop
an approach that deliberately omits the strength and direction of
pairwise biotic interactions from the general model structure and
focuses instead on the vital rates of individual species as they
relate to different environments. Biotic interactions are then
estimated post hoc from model sensitivity analysis. Vital rates

include survivorship, fecundity, and stage- or age-specific transi-
tion probabilities, each as a function of different environmental
types. In matrix population model notation, each species j in the
community is specified as an age- or stage-classified matrix
(i stages) with its own set of vital rates in matrix model form

nj t þ 1ð Þ ¼ Aj tð Þnj tð Þ (1)

where nj(t) is a vector containing age or stage abundances and
Aj(t) is a set of transition matrices containing vital rates that
fluctuate over discrete time intervals t. This can be accomplished
by drawing sets of vital rates from a set of environment types, or
using integral projection to connect a continuum of vital rates to
environmental states19. For a species that lives about three years
and starts reproducing in the third year,

Aj tð Þ ¼
0 0 F3j
G1j 0 0

0 G2j P3j

0
B@

1
CA (2)

where Fij denotes fecundity, Gij is cross-stage transition probability,
and Pij is probability of remaining in a particular stage. Because
vital rates in Eq. 2 fluctuate according to different environmental
conditions (wet vs. dry years, or disturbances of varying
magnitude) there may be any number of Aj(t) that correspond
to each environmental type, and the model becomes time-varying
or stochastic if these year types occur at random. The theory of
structured populations in stochastic environments is well devel-
oped and includes methods for understanding both asymptotic
and transient dynamics of individual populations, estimation of
population growth rates, and sensitivity analysis20–22.

Deriving species interactions from matrix community models
Species exist in communities, so individual species matrices must
be linked together in some way to understand how they interact.
This can be achieved by introducing a dependency assumption,
where density dependence acting on any one species becomes a
function of the abundances of other species in the community.

Construct individual matrix population
models for all important species/guilds

Connect matrices via a dependency
assumption: the simplest, most general
way in which aggregate community
abundance limits individual species
abundance. This creates a matrix
community model (MCM), where
species are linked via the dependency
assumption.

Parameterize the MCM with vital rates
according to major year-types:
hard-won, painstaking natural history
and experiments.

Building a Matrix Community Model1.

2.

3.

Build and project the community
model.4.
Post-hoc interrogation of model,
including uncovering latent competitive
interactions using cross-species
sensitivity analyses.

5.

Fig. 1 Building and projecting a matrix community model. The right panel depicts that fecundity, in this case, is a function of aggregate
density dependence. In models of riparian vegetation, the assumption that there is a finite amount of open space available for seedling
recruitment serves as the dependency assumption.
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This community model is neutral with respect species interactions;
pairwise interactions are not specified in the model structure, but
they are inferred post-hoc from analysis of the model output. The
coupling of individual species matrices into communities opens
up new challenges and possibilities. Although MCMs have been
explored analytically, efforts have involved small numbers of
interacting species in non-stochastic environments23–26. Adding
larger numbers of species to the community, especially in the
context of stochastic environments, introduces challenges that
push model analysis out of the grasp of analytical solutions and
into the realm of simulations. As such, thorough analysis of MCMs
has only become possible with the availability of greater
computational power.
Below we develop a framework for building and analyzing

matrix community models (Fig. 1) by quantifying species
interactions via sensitivity analysis (Fig. 2) and exploring novel
community trajectories using networks (Fig. 3). We illustrate the
approach with recent empirical examples exploring communities
of riparian vegetation27 and fish28, and discuss prospects for new
theoretical and empirical explorations.

Building a matrix community model
Construct individual matrix population models. Matrix population
models are a cornerstone of ecology, evolution, and conservation

biology29,30. The methods are diverse and can accommodate
variability in age or stage structure, environmental setting, and
timescale of interest. Matrix population models are also mechan-
istic in that they incorporate parameters and processes with direct
population-biological meaning, such as age-specific survivorships,
fecundity, and age or stage transition probabilities. The construc-
tion of single-species matrix population models is well-covered
elsewhere and thus beyond the scope of this paper, but some
general tips apply. It is advantageous, though not strictly required,
to choose a timescale common to all species in the community,
such as annual time steps. This allows all species to share a
common model structure, easing the implementation of multi-
species analysis. The next choice is which species to include.
Ideally one would include all species in the community, even
“unimportant” rare species that may be observed in low
abundances in extant communities, since these could become
more numerous under certain environmental regimes. Including
all species is not always practical since vital rate information may
be lacking for some taxa. One remedy is to group species into
guilds that possess similar life histories and environmental
responses31. Although guilds may simplify analysis in some cases,
it is not necessary to use them, especially when vital rates are
available for individual species. Because matrix community models
include density dependence, it is important to include taxa that

Fig. 2 Latent interactions derived from cross-guild/stage sensitivity analysis (guilds were used in this specific study for model
transferability). The relevant vital rate (here, mortality due to flood events; scaled from 0 to 1) was changed by increments of 0.01 in the
vicinity of its actual value and population size was recorded. At each increment, this was repeated independently up to 1000 times to achieve
stable convergence on mean values. Sensitivity was calculated as the slope of the average population size of a guild regressed against the
vital rate, which is analogous to taking the partial derivative of population size with respect to the vital rate of interest (Lytle & Merritt 2004).
Only sensitivities with R2 > 0.3 were retained for network analysis. Because each guild contains six stages, the matrix depicts both within-guild
and among-guild effects. The diagonal depicts self-effects, where an increase in mortality causes a decrease in abundance of that guild/stage.
Positive relationships suggest competition, where an increase in mortality rate in one guild/stage allows another one to increase. HT, XS, HS,
MM, and DS represent riparian plant guilds that possess similar vital rates (respectively, hydroriparian tree, xerophytic shrub, hydroriparian
shrub, mesic meadow, and desert shrub) and numbers indicate stage class.

D.A. Lytle and J.D. Tonkin

3

npj Biodiversity (2023)    26 



are significant in terms of numbers and biomass, at least under
some environmental conditions, since omission of a key species
could affect the relative abundance of other members of the
community.

Specify the dependency assumption. Although species are initially
modeled as independent autecological units that interact only
with their environments, the population dynamics of individual
species must be linked together in some way to form commu-
nities. This can be accomplished via a dependency assumption,
which specifies how density dependence acts across the entire
community in aggregate. The dependency assumption is the
simplest, most general way in which aggregate community
abundance limits individual species population growth rates.
One or more of the life history parameters for each species will
approach zero as the entire community approaches this limit,
which is essentially a carrying capacity, K32. If density dependence
acts on fecundity, for example, the reproduction of any species Fj
becomes a function of the summed quantity nS (measured as
number of individuals, biomass, or any other abundance metric) of
all S species of all stages in the community, or Fj(n1, n2, n3,…,nS). As
the sum total of nS approaches K, reproduction will approach zero
for all species. For models of riparian vegetation, the assumption
that there is a finite amount of open space available for seedling
recruitment has previously provided a reasonable dependency
assumption (Eq. (1) in ref. 27). At each annual timestep, the space
occupied by each stage of each species was summed and
subtracted from the total available riparian area, and this quantity
of available space became an upper limit on recruitment for each
species. The total amount of available habitat, K, was estimated
from aerial photos and study plots. In this way the population

dynamics of each species in the community can have an effect on
the recruitment of any other species. This approach is fairly
straightforward for communities such as riparian plants which
occupy a single trophic level and thus only experience competition
and facilitation, but what about multi-trophic animal communities?
Rogosch et al. (ref. 29) chose a dependency assumption for fish
communities where the egg survivorship of each species was a
function of the total fish biomass of all species present in the river
(their Eq. (2)). The upper bound on total fish biomass, K, was
calculated as the average fish biomass observed within a study
reach over a long time series. Even though the model included
species that are known to be predators on other species in the
community, Rogosch et al. (ref. 29) chose not to include these
known species interactions in the model structure. Rather, the
approach taken was to explore how well the model could predict
empirical fish abundances by considering only the autecological
interactions of species with different year-types under a general-
ized dependency assumption of finite fish biomass.

Measure the vital rates. This is the hard work. Measuring vital
rates can involve remeasuring individuals repeatedly over many
years, collecting data under a variety of physical settings and year
types, analyzing chronosequences of aerial photos of forest plots,
or conducting experiments under carefully-controlled conditions.
This includes collecting vital rates that pertain to relevant
situations, such as mortality of riparian trees during floods or
droughts (a different set of vital rates for each circumstance) or
mortality rates of fish under different year types that differ in flood
timing and magnitude. Although it is challenging to obtain
detailed vital rate data for many species in a community, the effort
is cumulative and vital rate data are becoming available for a
growing number of plant and animal species33,34. We note also
that there is a whole suite of hybrid modeling approaches
becoming available to estimate vital rates from diverse data
structures, including borrowing strength from other species and
fusing data35.

Build and project the community model. The vital rates and the
dependency assumption need to be combined into a single
modeling framework. Previous efforts discussed here used
coupled matrix population models, where vital rates for individual
species or guilds are included in a Leslie or Lefkovitch matrix, and
the dependency assumption is included as some form of
aggregate density dependence as described above. While
convenient, a matrix population model structure is not strictly
required. In principle, any population model structure that allows
for multiple year types and density dependence of species, such
as logistic growth models36, could be aggregated into a multi-
species model. This is a topic in need of further exploration.
Because a full community model incorporates vital rates

conditional on specific year types, the way in which the model
is projected forward in time will affect the model results. One
approach is to assume that year types occur at random with a
given frequency, resulting in a stochastic model structure that
meets assumptions of independent, identically-distributed envir-
onmental states37. The way in which models are projected forward
in time is quite flexible, however, and can allow the exploration of
any number of what-if scenarios. One can explore changes in the
frequency of year types38, autocorrelation among year types39, or
specified sequences of year types that match historical time
series28. This may be one of the chief advantages of using a
population-dynamic model framework such as the one described
here instead of a statistical analysis – the modeling framework can
accommodate a great variety of possible environmental scenarios,
including those imposed by extreme climate shifts and non-
stationary changes to climate regimes17.
The particulars of the community model structure will also

affect the long-term dynamics of the model. In a riparian

Fig. 3 Network analysis of riparian vegetation showing how
changes in a vital rate in one guild/stage affects other members
of the community. Edge thickness denotes the slope of the
relationship and edge color denotes R2 (colors and node labels as in
Fig. 2). Note that a relationship can have a strong fit (high R2) but
low magnitude of effect on abundance (shallow slope). The size of
each node on the graph depicts the average abundance of that
guild/stage. In this riparian community, which was modeled under a
natural flow regime of flood and drought frequencies, mature
hydroriparian trees (HT6) are a keystone of the ecosystem because
of their high connectance to other nodes. In western U.S. riparian
areas, HT6 often consists of cottonwood (Populus fremontii) gallery
forest.
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vegetation community model27, it was assumed that a single tree
could produce enough seed to populate all available open space
along the modeled river section and that seedling recruitment
was independent of adult tree population size. This led to a rescue
effect where the occurrence of a single favorable year could return
a small population back to a higher abundance, so long as the
other conditions governing recruitment were met. In a fish
community model28, by contrast, the number of eggs produced
was a function of the number of reproductive adults. This type of
fecundity can lead to stochastic dynamics where low numbers of
individuals can quicken the extirpation of a species. The models
discussed above examine a single, finite patch of habitat. Placing
the habitat in a metacommunity context could produce novel
model dynamics and results, and deserves further attention.

Identify latent competitive interactions using cross-species sensitivity
analysis and network tools. A sensitivity analysis measures the
effect that changing a single vital rate has on population growth
rate40 or population size41,42. In traditional single species
population models, sensitivities measure the population-level
effect of perturbations to vital rates in a single stage. In a
multispecies model, sensitivities measure how perturbation to a
vital rate affects abundance of a focal species (and its various ages
or stages) as well as other species in the community. Cross-species
sensitivity analysis produces an entire matrix of pairwise interac-
tions that reveal how vital rate changes in any one species or
stage could affect any other species (Fig. 2). A cross-species
sensitivity matrix produced in this way is analogous to a net
effects matrix derived from systems of Lotka-Volterra equations,
which encapsulates pairwise effects on species abundance after
accounting for all direct and indirect effects18. In essence, these
relationships represent a type of compensatory dynamic, whereby
reductions in one species or stage–as a result of altering a vital
rate–creates opportunities for others43. The cross-species sensitiv-
ity matrix is conditional on one particular environmental regime;
changing the environmental regime can result in an entirely new
cross-species sensitivity matrix, sometimes with major differences
in which species have the largest community-wide effects38.
Because MCMs are nonlinear due to density dependence,
numerical simulations must be used to calculate sensitivities.
Obtaining sensitivity estimates may be the most computationally
expensive part of this modeling process.
The cross-species sensitivity matrix is rich with information

about how species fluctuate in population size and interact with
each other under a specific environmental regime. Digesting this
information so that it is usable can be accomplished using the
tools of network theory, which examine the strength and number
of linkages among species (Fig. 3). Each node within the network
represents a species or guild, or an individual stage of a species or
guild. Positive and negative net effects are represented by the
edges (links) that connect nodes. It is necessary to define what
constitutes a significant interaction. For example, Tonkin et al.
(ref. 38) defined significant interactions as those sensitivities with
an R2 value exceeding 0.30 and a slope significant at p < 0.01.
It is important to understand what sensitivity networks do and

do not represent. An edge between two nodes is a measure of
how a change in a specific vital rate in one species-stage will
change relative abundances in another species-stage. It is
tempting to interpret edges as the per-capita effect of one
species on another, as is the case with a traditional interaction
matrix. In the context of matrix community models, the
interpretation is analogous but differs in that the interactions
are mediated by changes to a specific vital rate rather than
changes to abundances per se. Nevertheless, the effects of
changing vital rates of species i on species j are mediated by
altered abundances in species i. Thus, it is theoretically possible to
examine this relationship more directly in line with a traditional
community matrix approach18.

In complex communities, many interactions are possible and it
is difficult to visualize community dynamics. Network analysis is a
useful way to summarize these effects and summarize how they
change across environmental regimes44. There are a wide range of
potential network-level metrics available to characterize such
networks, including network connectance, or how connected the
network is via links among nodes; reciprocity, or how often links
between two nodes are bi-directional; link density, or the average
number of links per node; modularity, or how compartmentalized
the interactions are in the network; and the relative frequency of
different motifs (small, repeatable network subgraphs). Similarly,
there is a wealth of potential node-level metrics available to
characterize the role of species or species-stages in complex
networks, including various forms of degree, or how connected a
node is to other nodes, and centrality, or how often links pass
through a node. In the case of MCMs, analyses for directed
unipartite networks are most appropriate44. However, incorporat-
ing multiple trophic levels or interaction types (bipartite or
multipartite networks) is not beyond the realm of possibility with
further developments of the MCM approach.

DISCUSSION
On the one hand we have neutral biodiversity community models
that require little information about individual species’ biol-
ogy45,46. On the other hand we have food web and community
models that lean heavily on biotic interactions in model
parameterization47,48. In MCMs, species are well-described by vital
rates such as environment-specific reproductive and survival rates
derived from empirical data, but pairwise biotic interactions are
not specified up front. Thus, MCMs represent a middle ground
relative to these approaches. Treating species in this way allows us
to go beyond broad statements about biodiversity patterns and
begin to understand how the abundance and distribution of
particular species might change under future environmental
scenarios as a result of environment-vital rate interactions in a
multispecies density dependent setting. The model structure of
MCMs also allows us to generate testable predictions about how
species interact with each other, and how these interactions might
vary under different environmental circumstances.
Vital rates can be difficult to obtain because MCMs requires the

observation of organisms across a large range of environmental
conditions. However, vital rates reveal much about individual
species and community dynamics. A model is useful when it
leverages the information present in empirical data to give the
most explanatory power under the greatest variety of circum-
stances. Vital rates contain implicit information about how species
interact with each other and with the environment, although this
information may not be readily apparent when studying species in
isolation. For example, the fact that an oyster produces millions of
gametes per spawning event (high fecundity value) immediately
suggests that per-gamete survivorship is probably low. We know
intuitively that there is a tradeoff between the number and quality
of offspring because the energy that an organism can allocate to
reproduction is finite49. But sometimes the information hidden in
vital rates is only apparent in the context of complex communities,
and requires a particular model structure to reveal it. For example,
cottonwoods are often the dominant riparian tree in free-flowing
rivers in western North America. This occurs because cottonwoods
possess a combination of vital rates that confer success under river
flow regimes that experience occasional major floods that facilitate
establishment of new seedlings50. However, a shift to a homo-
genized flow regime with fewer flood events and more frequent
droughts favors the establishment of non-native tamarisk, which
possesses a life history similar to cottonwood but is more drought
tolerant51. Exploring these vital rates in the context of MCMs
reveals these differences and allows community level predictions
of species’ relative abundance on the landscape27. In this way,

D.A. Lytle and J.D. Tonkin

5

npj Biodiversity (2023)    26 



MCMs unpack the information hidden in vital rates and allow us to
observe, and predict, community-level differences that arise from
differences in species autecologies.
One could argue that our lack of information about individual

species’ vital rates leaves us in the same position as our lack of
knowledge of pairwise species interaction terms – that we will be
forced to populate our models with educated guesses rather than
empirically-measured estimates. There are several reasons why
this is likely not the case. Because vital rates represent a
fundamental mapping between an organism and its environment,
they may be less variable in different ecological contexts than
species interactions. A vital rate, such as an age-specific survivor-
ship for a specific year-type, is the observed result of one species
experiencing one specific environmental type. These data can be
obtained from cross-sectional studies along environmental
gradients, observations of marked populations through time, or
from controlled experiments. As the autecological library of
individual species grows, from observations obtained across a
greater variety of environments, this information can be readily
incorporated into models. This is not necessarily the case with
species interaction coefficients, which are expected to change in
the context of other species in the community7,52. Vital rates also
represent simpler, more fundamental quantities than species
interactions. An interaction coefficient is a function of two (or
more) species interacting with each other in addition to
interacting separately with the environment. As such, species
interaction coefficients are by definition higher-order phenomena,
and thus potentially more context-dependent; the number of
contexts is potentially infinite. While the task of compiling
autecological data for a large number of species may be daunting,
it is a definable task that is ultimately achievable. Parameterizing
MCMs shifts our focus from measuring species interactions to
measuring vital rates, a research agenda that restores descriptive,
autecological natural history to its former prominence53.
Matrix community models are strongly driven by differences in

the magnitude and frequency of disturbances or different year
types. While sometimes viewed as “noise” that needs to be
explained away with caveats, studies are beginning to embrace
environmental variation as a driving force in understanding
ecological interactions54 and evolutionary trajectories55. MCMs
include environmental variation in the fundamental model
structure, and some of the most striking findings arising from
MCMs concern how community structure, and the ecological
importance of particular species, can change as environmental
regimes change38. The interaction between environmental varia-
tion and species persistence has many analogies to the lottery
model of Chesson & Warner (ref. 56), a connection that deserves
further attention.
In addition to MCMs, other community modeling approaches

can be useful for estimating species interactions from other
sources of data, but require great care in interpreting or assigning
‘interactions’. For instance, multivariate autoregressive models
(including state-space variants; MARSS) allow estimation of
interaction strengths from time series data in addition to a
species-environment covariance matrix57,58. Joint Species Distri-
bution Models (jSDMs) offer the ability to infer species interactions
from data on species co-occurrence, although missing environ-
mental predictors may impose limits59,60. MCMs differ from these
approaches in that they employ a mechanistic population biology
structure, rather than relying on statistical inference to identify
interactions. Because they are mechanistic, MCMs may be better
able to project population and community structure into future,
nonstationary environmental regimes that are beyond the
predictive envelope of statistical methods17, but answering this
will depend on comparing MCMs to the various modeling
approaches. MCMs may also help resolve debates over whether
species interactions can be inferred from co-occurrence data
at all61.

Future challenges for matrix community models
Cross-species sensitivity analysis and species interactions. Ideally,
community models should be useful for both forecasting
population dynamics under specific scenarios and revealing
generalities about how biological communities operate. Cross-
species sensitivity values derived from MCMs are hypotheses
about how species might interact under particular environmental
regimes. This is a potentially rich source of information that can be
used to understand mechanistically how communities work, and
also make predictions about species interactions that can be
empirically tested. This hypothesis-generating ability is a key,
often unexplored, benefit of ecological forecasts for the develop-
ment of ecological theory. Which species interactions are
expected to be strong under novel environmental regimes? Are
there some species interactions that persist across a wide variety
of environmental regimes? Can we use these results to identify
general rules that govern how changes in abundance of one
species affects another as environments change?

Evolution and eco-evo feedbacks in a full community context. In
single-species matrix models, sensitivities describe how changing
a vital rate would change population growth rate or some other
model parameter of interest. Sensitivities are also estimates of
selection gradients, because natural selection will favor values of
vital rates that increase population growth rates29. It seems
intuitive, then, that cross-species sensitivity analyses derived from
MCMs should tell us something about how species could evolve in
a full community context. A vital rate (such as mortality, growth
rate, or fecundity) is not an organismal trait that can be directly
changed by natural selection, however, so a link would need to be
made between the vital rates used in a model and particular
features of the organism that can evolve (body size, allocation to
growth vs. reproduction, resource utilization, etc.). Another
challenge is that evolutionary change in one species will have
rippling effects throughout the community62,63, necessitating the
continuous recalculation of model outputs as the system evolves9.
This presents computational challenges – as one (or more) species
evolves, other species in the community may evolve in response
to it, creating the potential for strongly nonlinear dynamics in
model behavior. Advances are being made that incorporate eco-
evo feedbacks into matrix population models64, and perhaps
these insights can be eventually be integrated into MCMs.

A call for more theory and more analysis tools. The matrix
community models discussed here are stochastic, non-linear,
multispecies models that incorporate density dependence.
Depending on the specifics, model analysis may also require
analysis of transient dynamics rather than analysis at equilibrium
conditions64. Because of their mathematical form, MCMs contain-
ing more than two species have thus far been analyzed using
simulation approaches, which limits the discovery of general
model principles and behaviors. Can we identify general principles
or patterns that hold true under a variety of conditions? For
example, do species with characteristic sets of traits respond
predictably to certain environmental regimes? How do different
forms of density dependence affect model output? What is the
effect on model behavior of adding more species (or removing
species)? All of these are important questions, but it remains to be
seen if they can be answered analytically, with simulations, or with
some combination of the two approaches. Developing a more
generalized model structure that can accomodate a wide variety
of applications is also an area in need of development. Current
MCMs are tailored to specific systems, such as riparian forests and
riverine fish communities, and the model structures reflect the
particulars of these organisms and ecosystems. A more general-
ized implementation, with corresponding code, would facilitate
exploration of general model behavior as well as specific
applications in other ecosystems.
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Metacommunity context. In the matrix community model devel-
oped by Rogosch et al. (ref. 28), if the model is projected far
enough into the future all fish species eventually go extinct except
one. The surviving species is typically the one with the highest
single-species stochastic rate of population increase under the
given environmental regime (sequence of flood and drought year-
types in this case). At first glance this appears to be a failure of the
matrix community modeling approach – that the model fails to
allow the stable coexistence of species in communities. This
perspective assumes that there must be some mechanism
(storage effect, facilitation, etc.) that allows species to coexist in
communities through time. An alternative view is that we should
expect the local extirpation of most species when space and
population sizes are finite, especially in stochastic environments.
In the absence of spatial rescue effects, if we throw seven fish
species into an isolated 1-km reach of river and return decades
later, it would be unsurprising to see only a single species
remaining, if any remained at all, due to chance demographic
events that occur in variable environments. Indeed, it is a general
result of stochastic population models that finite populations
eventually go extinct in fluctuating environments, due to
geometric averaging of population growth rates over time65,66.
There are two potential ways of exploring this result. First, the

analysis of transient dynamics can be used to explore population
and community trajectories at meaningful timescales42,67. Recog-
nition that communities may never achieve equilibrium is also
leading to the development of new methods for understanding
non-equilibrium community tendencies68. Second, a metapopula-
tion model approach69 would allow species to recolonize patches
of habitat, and also allow habitat patches to experience
environmental states at different frequencies and synchronies.
Single-species metapopulations could also be aggregated into
metacommunities70 within an MCM framework, as has been done
for other community models71.

Can we obtain unbiased vital rates?. The argument can be made
that vital rates, just like biotic interactions, are measured in the
context of other species and environmental states, and are thus
biased in some way. For example, life history traits of many
organisms vary across latitudinal and elevational gradients,
suggesting that these traits change in response to context72,73.
The variability of species traits and vital rates across populations
and ecosystems is an open question and an active area of
research74–77. MCMs assume that variation in species’ vital rates is
lower than variation in pairwise competition coefficients when
looking across a diversity of environmental regimes or community
contexts. This is an assumption that can be directly tested with
empirical data.

Summary
Matrix community models flip the narrative on species interac-
tions by omitting them entirely from the model structure. Instead,
MCMs rely on autecological processes to show us how species
interactions arise from species living, dying, and reproducing in
variable environments. Under this view, pairwise species interac-
tions are not a tangible force that can be measured and then
entered as a parameter value, but rather an outcome of more
fundamental interactions between organisms and the dynamic,
fluctuating environments in which they live. This is not a new view
of ecological communities; debate over the importance of biotic
vs. abiotic drivers is a recurring theme in community ecology.
Clearly, species change in abundance due to environmental
conditions in addition to direct and indirect competition with each
other. The question is, if we want to forecast the abundance and
diversity of organisms in future environments altered by shifting
climates and anthropogenic change, which features of the
organisms do we prioritize for inclusion in our models? MCMs

provide an opportunity to elevate species-environment relation-
ships in a way that simultaneously captures the most important
way in which species interact with each other.
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