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Introduction

Natural river systems often maintain persistent and stable ecological communities despite
their complex environmental structure and dynamic flow regimes (Lytle and Poff, 2004;
Chapter 2). This stable-yet-disturbed paradox reflects a number of mechanisms related to
resilience, particularly spatiotemporal environmental heterogeneity (McCluney et al., 2014),
which can occur in longitudinal, lateral, vertical and temporal dimensions. A large component
of this riverine heterogeneity is dictated by dynamic flooding and drying regimes (Death et al.,
2015; Poff et al., 1997; Tockner et al., 2010). Moreover, the hierarchical structuring of habitats,
populations, communities, and ecosystems across these networks generates ecological
attributes that enable rapid responses to perturbations in an asynchronous manner
(Firkowski et al., 2022; Gray and Harding, 2010; Terui et al., 2018). The dendritic structure
and flow regimes of riverine systems also dictate the movement and exchange of energy and
organisms between different environments (Larsen et al., 2019; Loreau et al., 2003; McCluney
et al., 2014; Tonkin et al., 2018). Thus, rivers are inherently part of a connected metasystem
(see glossary) network of interacting species and habitats, which, coupled with their
dynamic flow regimes, facilitates the evolution of a wide suite of resilience mechanisms
(Van Looy et al., 2019).

Despite strong theoretical underpinnings for the role of heterogeneity-promoting resilience
(Lamy et al., 2020; McCluney et al., 2014; Poff et al., 2018; Tockner et al., 2010; Chapter 1), the
mechanisms driving riverine ecosystem resilience have been difficult to study empirically,
remain poorly understood, and have likely been compromised by the modification of rivers
worldwide. For example, floodplains are particularly important lateral components of river
systems, yet are some of the most human-altered riverine habitats (Arscott et al., 2002; Hauer
et al., 2016; Peipoch et al., 2015; Tockner and Stanford, 2002, Chapters 3, 5 and 12). This alter-
ation potentially threatens various mechanisms conferring ecological resilience. Thus,
although rivers may appear highly resilient to natural dynamism, we need to better under-
stand the drivers of resilience to manage increasing human pressures.

Braided rivers are prime examples of systems that are highly heterogeneous in longitudi-
nal, lateral, vertical and temporal dimensions (Tockner et al., 2006). These rivers form where
steep river gradients combine with flashy flows, an abundant supply of bedload-calibre ma-
terial, and erodible banks to create extensive gravel-based floodplains and braidplains
(Box 8.1). Although rare worldwide (Tockner et al., 2003; Tockner and Stanford, 2002),
they are ideal for investigating the resilience mechanisms maintaining complex riverine land-
scapes and their biodiversity and functions. Braided rivers are also an ecological nexus of
wider mountain landscapes, sustaining not only aquatic biodiversity but considerable terres-
trial biodiversity in connected habitats forming a greater ‘meta-ecosystem’ (Hauer et al.,
2016). Persistence of ecological structure and function in these wider landscapes largely de-
pends on the maintenance of emergent properties such as the consistent (i.e., ‘stable’) delivery
of resources and primary productivity despite regular disturbances (Death et al., 2015; Fir-
kowski et al., 2022). Multiscale biophysical resilience mechanisms are likely integral to this
stability of (meta-)populations, (meta-)communities, and (meta-)ecosystems (see glossary)
within braided river landscapes, thereby explaining this apparent disturbance-stability
paradox. Here, we review the variety of resilience mechanisms that likely underpin braid-
plain stability despite their regular disturbance. We discuss how within-channel
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spatiotemporal heterogeneity (landscape heterogeneity and asynchrony) could create system
resilience at regional or metasystem (see glossary) levels. We also consider species traits that
underpin resilience in these inherently disturbed systems, and how such traits facilitate con-
nectivity within the heterogenous landscape. We adopt Holling (1973) concept of resilience,
whereby resilience is characterised by a system’s persistence and ability to absorb disturbance
while maintaining consistent emergent properties, such as the biological communities associ-
ated with habitats across a braidplain created by shifting braided channels.

Links between river landscape heterogeneity and ecological resilience

Environmental complexity and heterogeneity are considered integral components of resil-
ience in ecological systems (McCluney et al., 2014; Wohl, 2018; Chapter 10). For example,

BOX 8.1

B r a i d e d r i v e r g e o m o r p h o l o g y
The multiscale influences that maintain

biodiversity in braided rivers play out on a
complex background of hydrological and
geomorphological processes that shape a
dynamic and complex physical environment
(Dollar et al., 2007; Tockner et al., 2010).
Braided river systems are dominated by
continually changing flow and associated
bed movement, with on average 30%e60%
of the riverbed renewed on a yearly basis
and up to 100% on a 5-year interval (Hauer
et al., 2016; Hicks et al., 2021; Malard et al.,
2006). The braid system is maintained in
areas where there are large amounts of
erosion linked with steep mountain-to-sea
gradients that mean the river transports
large amounts of gravel (Ashmore, 2013;
Kasprak et al., 2019). Depending on local
conditions, a braidplain can also comprise
numerous habitats and flow paths with
substantial subsurface connectivity, so sta-
ble side or mid-channel springs upwell in

areas where groundwater flow is forced to
the surface or upwells locally through
porous gravels (Arscott et al., 2002; Ash-
more, 2013; Hauer et al., 2016). The large
diversity of habitats is associated with a
variety of temperature gradients within the
main braid-belt due to variation in ground-
water and surface water sources (Hauer
et al., 2016; Gray et al., 2016). Individual
habitats such as springs, pools, terrestrial
gravel-bar islands, and low-flow networks
of channels comprise the surrounding
lateral braidplain, while the main braid-belt
comprises more swiftly running deeper
water (Bellmore et al., 2015; Gray et al.,
2016). These habitats are connected across
the reach and the whole braidplain by
groundwater, with lateral habitats being
dependent on groundwater flow (Hauer
et al., 2016). Thus, the whole braidplain,
with highly interlinked but distinct habitats,
is one connected system.
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heterogeneity at landscape or whole ecosystem levels means underlying characteristics, such
as differences in species composition or asynchronous fluctuations of population or commu-
nity properties in different patches, could scale up to facilitate system-level resilience through
spatial and species-based insurance effects (see glossary). These effects mean that although
individual local communities may be unstable or fluctuate through time in response to
environmental changes, regional-scale aggregate properties such as total metacommunity
abundance or biomass may remain constant due to variation in species composition or be-
tween local patches (Firkowski et al., 2022; Lamy et al., 2021; Loreau et al., 2003; Wang
and Loreau, 2014). Furthermore, highly heterogenous river landscapes have long been theor-
ised to comprise greater ecological resilience to environmental perturbations such as floods
(Hering et al., 2004; McCluney et al., 2014; Reice et al., 1990). McCluney et al. (2014) suggested
that multiple reach types associated with environmental heterogeneity in a longitudinally
connected network will mitigate flooding impacts, because floods would not disturb the
whole river evenly. Within-channel refuges resulting from such heterogeneity enable rapid
recolonisation of disturbed patches, leading to riverscape-scale resilience even in the face
of regular disturbance.

River landscapes, particularly those in dynamically connected river-floodplain ecosystems
like braided rivers, thus offer great potential to examine why and how heterogeneity creates
resilient ecosystems (Tockner et al., 2003). The degree of heterogeneity within a river varies
with a multitude of factors but largely depends on system hydrogeography related to the
dendritic structure connecting reaches longitudinally. However, in braided rivers the multi-
ple intertwined channels mean heterogeneity also occurs laterally through the variety of
channel types across a braidplain (Box 8.1, Fig. 8.1). These braided river habitats are struc-
tured and connected by physical processes acting on a variety of spatial and temporal scales.
The spatial arrangement and connectivity of channels within a braidplain therefore set the
stage for movement- and connectivity-reliant resilience. Braided river beds, by forming a
continuously changing network of aquatic habitats, are perhaps the most dynamic of all river

FIGURE 8.1 A sample of the heterogenous braidplain of the Cass River, a braided river in Canterbury, New
Zealand. This braidplain contains a variety of aquatic environments including a stable groundwater spring (A), an
upwelling channel spring (B), backwaters (C), a major braid channel (D), and minor channels (E) connected to the
main braid (D) by surface water flow.
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environments and are an ideal, albeit challenging, environment for testing and understand-
ing relationships between complexity and connectivity that underpin resilience.

Spatial and temporal heterogeneity in braided rivers

A stable, yet disturbed, river model
Resilience in river systems is tightly linked to the characteristics of disturbance regimes

(Lytle and Poff, 2004; Poff et al., 1997; Resh et al., 1988; Townsend, 1989, Chapter 21). The
high-frequency of flow-related bed disturbance in braided rivers creates an inherently unsta-
ble physical environment, meaning only highly resilient ecological communities can persist
(Bellmore et al., 2015; Tockner et al., 2006), hence the paradox of a ‘stable yet disturbed’
ecosystem (Winterbourn, 1997). To better understand the drivers of this stable-yet-disturbed
phenomenon, river ecology studies are shifting from single-channel assessments to evalua-
tions of complex channel networks in parallel with the expansion of metasystem theory
(Altermatt, 2013; Datry et al., 2016; Tonkin et al., 2018), with braided rivers presenting an
extreme example (Gray et al., 2016; Hauer et al., 2016; Tockner et al., 2006). This expansion
of multichannel and multiscale research explicitly recognises that a key driver of resilience
relates to the wider spatial context involving connectivity dynamics beyond local patches.

Understanding the disturbance-linked drivers of resilience requires considering the scale
of disturbance, including those that can tip ecosystems past ecological thresholds (Dent
et al., 2002). For example, small-scale disturbances can remove species and dampen interac-
tions in specific habitats such as main channels (Death et al., 2015; Larsen et al., 2019), but
wider system stability is likely maintained through connectivity with other braidplain com-
munities (Lamy et al., 2020; McLeod and Leroux, 2021). On the other hand, large-scale distur-
bances, such as a decadal-scale flood, could reset a whole braidplain through removal of
multiple communities simultaneously thus reducing recolonisation potential (Milner et al.,
2018; Tonkin, 2022). Large floods could also synchronise population cycles, thereby reducing
resilience to near-future events. Thus, resilience is closely connected to the scale of distur-
bance and must be carefully considered when investigating resilience drivers.

Frequent but moderate flow variations (and thus bed disturbances) caused by unpredict-
able rain events are a fundamental physical property of braided rivers. Spatial heterogeneity
likely underlies a critical resilience-promoting mechanism to counter these frequent but mod-
erate events. In braided rivers such disturbances continually create differing frequencies of
spatial and temporal environmental change because the force of water shifts the gravel
bed freely, creating new channels and drying others (Box 8.1). The connections between local
environments are also constantly altered by the shifting gravel creating a habitat mosaic that
facilitates movement of species, resources and nutrients between significantly different, but
juxtaposed, physical environments (Kayler et al., 2019; Thorp et al., 2006; Venarsky et al.,
2018). Species that occupy these dynamic environments often also harbour traits that enable
rapid recolonisation ability or that enhance propensities to avoid or cope with environmental
stress (Poff et al., 2018). Thus, not only is disturbance scale important, so too are the hydro-
geological processes by which flooding and drying create and destroy habitat and connectiv-
ity, leading to a patchy habitat mosaic that contributes positively to resilience.
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At the landscape or riverscape scale, the braided river resilience described above is driven
by multiple components of flow fluctuation. Variations in flow event periodicity and magni-
tude across the braidplain and diverse topography (Box 8.1) also drive physical habitat het-
erogeneity. Under these conditions smaller floods maintain physical bed configurations even
though species distributions may be reorganised, whereas larger floods rework the entire
bed, creating new habitats and causing local population extirpations (Death et al., 2015). Dur-
ing flow events, the local effects are also spatially decoupled across the braidplain: faster-
flowing, lower-lying channels are disturbed more frequently or more rapidly than lateral
channels like side braids, which form in the higher elevation gravel mounds as flow increases
(Gray et al., 2016) (Fig. 8.1). These asynchronous flow dynamics between distinct habitats
create a gradient of patches within the braidplain over which physical drivers of community
structure vary, promoting stability at larger scales (Firkowski et al., 2022; Larsen et al., 2019;
Townsend, 1989). These types of flow-driven heterogeneity are characteristic of braided
rivers and likely a primary reason why braided rivers are inherently resilient at multiple
spatiotemporal scales, as we discuss further below.

Influences of the mosaic of heterogeneity
The topographically varying bed surface and heterogeneous hydrogeomorphological pro-

cesses in braided rivers create a mosaic of habitats both laterally and longitudinally in vary-
ing stages of successional composition (Box 8.1). This ‘shifting habitat mosaic’ (Arscott et al.,
2002) maintains a portfolio of habitats in relatively even quantities despite regular physical
flow perturbations that change the configuration of local riverbed environments. Although
the whole braidplain can be affected in large-scale flood events, which alter channel config-
uration through the entrainment and redistribution of sediment (Ashmore, 2013; Death et al.,
2015), the relative quantities of habitats typically persist. Arscott et al. (2002) showed that
while the spatial configuration of aquatic habitats within a braided river had very high turn-
over (61%) compared with other rivers after flooding, typical flooding caused little change in
braid planform or composition of landscape cover. Similarly, the overall composition of
abiotic river features measured by Larsen et al. (2019) changed very little after flooding
despite potential widespread changes in configuration. Thus, the relatively ‘stable’ features
of braidplain structure can persist despite significant changes in their configuration and asso-
ciated disruption to their biotic components.

The various habitats within the heterogeneous braidplain mosaic contribute different spe-
cies compositions and population sizes to overall braidplain biodiversity (Gray et al., 2006;
Gray and Harding, 2007). Thus, braided rivers tend to have high beta diversity despite often
low local habitat richness (alpha diversity). Braided river main channels are usually relatively
‘depauperate’ but can contain a few unique species, whereas springs, pools and long discon-
nected lateral channels can have higher abundances and contribute substantially to total
braidplain biomass and diversity (Gray and Harding, 2009; Karaus et al., 2013). Lateral hab-
itats, including springs in particular, often contribute disproportionately to braidplain-wide
beta (variation among patches) and gamma (overall braidplain richness) diversity as a result
of their unique assemblages (Gray et al., 2006; Gray and Harding, 2009; Karaus et al., 2013).
Thus, ecological resilience of these rivers may be particularly influenced by lateral braidplain
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aquatic habitats associated with, but disconnected from main braids, which house an array of
species ready to recolonise recently disturbed patches. In this way, flood events that reconfig-
ure the braidplain and maintain the relatively constant proportional distribution of habitats,
from disturbed main channels to stable lateral springs, are key contributors to the overall
biodiversity and biomass characteristic of this stable-yet-disturbed environment.

Unpredictability, stochasticity and the ‘mosaic of disturbance’
The proportionally ‘stable’ nature of braidplain habitats despite constant physical fluxes

from flooding and drying perturbations is a mechanism of ecological resilience in and of itself
(Vorste et al., 2016). However, the frequency and severity of flow disturbances on each unique
habitat depend on the particular location within the braidplain. Larsen et al. (2019) found that
flooding slightly reduced species density and richness in the most connected channels, suggest-
ing disturbance was stronger in these channels than in disconnected lateral habitats. This indi-
cates that not only is there a ‘shifting habitat mosaic’ as Arscott et al. (2002) identified, but also
a ‘shifting mosaic of disturbance’where lateral and central environments within the braidplain
are affected by disturbance at different rates. Thus, in addition to spatial habitat heterogeneity
per se, the mosaic of disturbance leads to different patches being spatially decoupled and asyn-
chronous in their disturbance regimes and responses. This adds yet another dimension of mul-
tiscale resilience to maintain braided river metacommunities.

The magnitude of a flow disturbance will influence the spatial coupling of habitats during
disturbances. For instance, in small magnitude floods the river-bed configuration is main-
tained and disturbances will not affect all habitats at the same rate. During these floods local
habitat quality can be improved by bed movement within wetted channels resetting habitat
conditions and preventing weed, fine sediment, or inedible algal build-up, and interrupting
species interactions and community assembly processes (Death et al., 2015; Larsen et al.,
2019). Indeed, there is a trade-off between the habitat-enhancing effects of floods and their
direct effects on species mortality. In these situations, early colonisers often have fast life cy-
cles but low resistance to flood events, creating a succession of species colonisation after
flooding (McMullen et al., 2017). However, as floods increase in magnitude their effects prop-
agate beyond individual channels and into the wider braidplain. Larsen et al. (2019) showed
that invertebrate communities across a gradient of lateral habitats converge in their compo-
sition during flooding events due to species removal and selection for specialist species, and
then diverge again afterwards. This sequence reflects differences in local patch conditions and
suggests deterministic community assembly processes become stronger with time after a
flood (Larsen et al., 2019).

Spatiotemporal environmental heterogeneity or ‘mosaics of disturbance’ theoretically
promote stability and resilience of metacommunities at aggregate scales through both
spatial (asynchrony between local community dynamics Wang and Loreau, 2014) and spe-
cies (varying species responses to the environments de Mazancourt et al., 2013) insurance
effects. These mechanisms will be most pronounced when species have strong environ-
mental preferences across different braidplain habitats so that asynchronous environmental
fluctuations increase variety in species composition between habitats. For example, the
faster flowing, frequently disturbed main and minor channels are dominated by mobile
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species or species with fast life cycles such as mayflies (Ephemeroptera) and midges (Chi-
ronomidae). As lesser-disturbed channels recover from prior disturbances, their commu-
nities will progressively assemble into those comprising species that are vulnerable to
disturbance, such as cased caddisflies (Trichoptera) and snails (Mollusca). These species
and spatial insurance mechanisms promote increasing resilience at more aggregated scales
in both physical environments (patch to braidplain) and biological organisation (popula-
tions to communities to metacommunities). The asynchronous and spatially decoupled
way flooding and drying impact the habitat mosaic allow community assembly processes
to vary laterally between similar habitat types, with some braidplain areas more recently
affected by perturbations such as flood scouring than others. Thus, the braidplain repre-
sents a spatially and topographically varying gradient of recovery from disturbance
(Fig. 8.2) and creates an environment in which local population and community dynamics
remain asynchronous through time, promoting stability at aggregate scales (Wang and Lor-
eau, 2014). Therefore, while individual habitats may appear ecologically unstable due to
community variation between stochastic events, the asynchronous and time-varying nature

FIGURE 8.2 Mosaic of disturbance that occurs within a braidplain, where central channels are disturbed at more
frequent rates of flooding and drying than lateral and more protected channels and upwelling points.
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of these perturbations across the braidplain likely enables more stable aggregate biodiver-
sity properties and resilience at larger spatial scales or high levels of biological organisation,
although this hypothesis has not been tested.

Disturbance-mediated productivity and interaction strength
Crossed with this gradient of disturbance is variation in the productivity of local habitat

conditions and the strength of top-down interactions, which will likely determine the upper
limit to species richness and food chain length through combined top-down and bottom-up
effects, as well as determining rates of postdisturbance recovery (Chanut et al., 2019; Death
and Zimmermann, 2005; McHugh et al., 2010; McIntosh, 2022; Tonkin and Death, 2012). In
braided rivers both mid-channel and lateral springs can be high productivity patches, but
are subject to differing disturbance regimes associated with flood-driven scour that is an
important driver of primary productivity (Biggs, 1995; Snelder et al., 2014). Productivity dif-
ferences will also vary laterally among major and minor braids, with small shallow channels
potentially receiving more solar radiation than larger channels fed by the same water,
increasing their productivity but simultaneously rendering them more prone to drying.
This creates a mosaic of productivity patch types that further contributes to braidplain het-
erogeneity. Thus, flow disturbance also dictates food source availability for primary con-
sumers (Dinh and Death, 2018; Snelder et al., 2014) and food web development (McHugh
et al., 2010; McIntosh, 2022) in ways that are also stabilising.

Spatiotemporal variation in productivity likely drives the evolution of various dispersal
traits among consumers because it means that during certain periods, more disturbed chan-
nels, such as minor braids, could also be some of the most productive places for consumers
(Bellmore et al., 2015; Dinh and Death, 2018). Consumers in these situations will struggle to
track the spatial distribution of resources due to the fast timescales of changes in productivity
as small flow changes alter channels and their associated temperature and light regimes.
Moreover, by limiting predatory fish presence in disturbed channels (McIntosh, 2022) distur-
bance probably also creates a mosaic of interaction strengths across the braidplain that likely
mean most interaction strengths are weak (Bellmore et al., 2015). The resulting increases in
spatial heterogeneity of trophic interactions may serve to dampen overall interaction strength
such as predation and enhance aggregate food web stability (Bellmore et al., 2015).

Ecological resilience through continuity and connectivity

Species-specific resilience
Species traits are key to the resilience to environmental fluctuations typical of dynamic

braided rivers and rivers more generally (Lytle and Poff, 2004; Poff et al., 2018; Van Looy
et al., 2019). Particular traits can facilitate the propagation of resilience from local populations
through to community, metacommunity, and meta-ecosystem scales via species interactions
and movements facilitated by physical environment connectivity (Jarzyna et al., 2022; Lamy
et al., 2020; McLeod and Leroux, 2021). For example, within channels with frequent flow
changes and associated flood disturbance, communities tend to be dominated by species
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that have fast life cycles and high mobility (Gray and Harding, 2007; Poff et al., 2018). During
high flow events, smaller species, or those with burrowing traits, may move into the hypo-
rheic zone and newly created backwaters, allowing rapid recolonisation of the main channel
when water recedes (Vorste et al., 2016). Rapid recolonisation, along with spatially decoupled
small-scale disturbance events, means that while one channel may appear variable through
time, variability of channels at the wider braidplain scale will likely be lower (Bellmore
et al., 2015). In fact, there appears to be a trade-off between resistance and resilience of species
to flood events whereby smaller, fast-life cycle species may also be subject to greater mortality
during floods (i.e., low resistance) but recover faster than resistant species (i.e., high resil-
ience; McMullen et al., 2017).

Resistance and resilience strategies are highly varied among braided river occupants, and
associated trait tradeoffs may scale with body size or organismal hierarchy. For instance, high
mobility in fish enables movement into flood or temperature refuges as flow or temperature
increases (Armstrong et al., 2021; Davey et al., 2006), whereas small-bodied organisms may
lose whole cohorts to flood events that are subsequently replaced in the weeks or months
following a flood. Such organisms would display staggered life history timings, with bet-
hedging strategies likely a common evolutionary adaptation to the unpredictability of flow
events in braided rivers (Lytle and Poff, 2004). Higher-level consumers have evolved adap-
tations to cope with braided river unpredictability: many braided river bird species have
the capacity to lay several clutches in a season to combat flooding events that may occur
in a breeding season and destroy nests (Heather et al., 2015; Sanders and Maloney, 2002).
Furthermore, in years where river channels are scoured by floods many species of river birds
can gain alternate food sources from other areas of the braidplain such as ponds and mud-
flats, despite preferring lipid-rich prey from main channels (Pierce, 1983). Such an array of
life history adaptations enables resilience across a variety of spatial, taxonomic and ecological
scales (a poorly understood aspect of stability); see (Kéfi et al., 2019), even during very large
disturbances during which the whole braidplain may be affected simultaneously.

Movement and metacommunities
So far we have highlighted the strong influence of environmental conditions in structuring

communities and driving resilience but as alluded to, populations and communities are also
highly connected by movement and water flow (Gray et al., 2016; Richards et al., 2002). Con-
nectivity and movement, when mediated by disturbance, likely play a critical role in system
resilience. For example, relatively isolated side tributaries can act as source populations for a
range of downstream sink populations (Woodford and McIntosh, 2010). In braided channels
there may be more opportunities for various metapopulations and metacommunities,
including source-sink dynamics and mass effects (see glossary), to form through the varying
levels of connectivity across a patchy habitat. These influences are relatively unstudied at any
scale on braidplains. Moreover, a wide range of confluence interactions in a braided river-
scape could also create refuges for native fish species, weaken food-web interactions and
facilitate population rescue through increased spatial heterogeneity in the same way that
side tributary confluences work (Bellmore et al., 2015; Boddy et al., 2019). Finally, patches
of groundwater inputs can provide temperature stability and refuges in some areas,
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protecting from hot weather and desiccation in the summer and freezing in the winter, and
these patches can be seasonally exploited by fish across the braidplain (Caruso, 2006; Hauer
et al., 2016; Muhlfeld, 2021). Despite high movement and connectivity, the frequent reconfi-
guration of the braidplain by disturbance prevents biotic homogenisation of communities
(Larsen et al., 2019). Therefore, the connections between distinct river habitats via species
movements are vital ingredients in many of the resilience mechanisms we have described.
That is, the high connectivity is met by equally high disturbance frequencies to balance its
potential negative (i.e. homogenising) effects.

Habitats are not simply connected by species movement, but also by the flow of energy
and resources across space, forming meta-ecosystems (Loreau et al., 2003). Resources are car-
ried between aquatic habitat patches by water connectivity, and can move beyond typical
ecosystem boundaries such as the land-water interface by the life cycles of aquatic inverte-
brates, land-water carbon transfer and terrestrial insects washed into the water (Kayler et
al., 2019; Larsen et al., 2019; Thorp et al., 2006; Tockner et al., 2006). Braided rivers have
extremely high amounts of edge habitat per river kilometre, and this creates tightly inter-
linked terrestrial and aquatic systems (Tockner et al., 2006). The large edge area likely in-
creases energy exchange and productivity, which can fuel resilience and maintain biomass
for both riparian consumers (Paetzold et al., 2005) and instream consumers such as fish
(Muhlfeld, 2021). Loss of these edge areas could reduce the overall resources available and
resilience of communities. For example, historic alterations such as logging and channelisa-
tion that switch rivers from multichannel to single channel typically reduce total edge area
and natural features causing reductions in riparian community biomass (Paetzold et al.,
2005; Venarsky et al., 2018). Thus, the elevated connectivity associated with the large amount
of edge habitat typical of braided channels likely facilitates resilience across a larger spatial
environment through species movement and spatial subsidies (Baruch et al., 2021; McLeod
and Leroux, 2021; Nyström and Folke, 2001). Braided river connectivity is likely further
enhanced due to the multiple flow pathways across the braidplain, frequent flow changes,
and high edge-per-river length ratios (Gray et al., 2016; Sambrook Smith et al., 2006; Tockner
et al., 2006). Overall, the highly subdivided channels of braided rivers likely mean such con-
nections are especially important for braided river resilience. In particular, they are likely
crucial for associated terrestrial consumers like birds that forage in edge habitat.

Biophysical feedbacks, lock-ins and net-negative impact disturbances

The inherently flood-disturbed nature of braided rivers outlined above contributes to
ecosystem properties that likely maintain resilience through the constant creation and alteration
of habitats, communities, and their reassembly.However, there aremany opportunities for these
processes to be disrupted and for other disturbance types to be problematic. Floods are only one
type of disturbance on a scale of events that drive ecological changewith negative or positive im-
pacts (Grahamet al., 2021). In river landscapes there aremany other forms of disturbance such as
invasion, drought, and land acquisition that may negatively impact the net resilience of ecolog-
ical systems like braided rivers. These types of threats may even drive systems towards thresh-
olds where there is reduced heterogeneity and flow becomes synchronous in a single channel
(Fig. 8.3). This in turn is likely to reduce long-term stability of their emergent properties
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(Lamy et al., 2020; McCluney et al., 2014), particularly in braided river systems where stability
may rely on asynchrony and heterogeneity in the channel network.

Disturbance drivers such as weed invasion or water abstraction, in particular, could
disrupt the positive influence of flow-pulse driven disturbances that create resilience, creating
biophysical feedback loops that not only impact habitat availability but also reduce the ability
of the river system to be resilient to flow disturbances (Gray et al., 2016; Venarsky et al., 2018).
Often multiple press disturbances occurring simultaneously will build upon one another in a
positive feedback loop that reinforces and facilitates further change (Figs 8.3e8.4).

FIGURE 8.3 The Waimakariri river near its start in the Southern Alps runs free (A), but lowland weed and
sediment entrapment (B), along with land acquisition and stop banks (artificial levees), can restrict braided river
paths (C) causing a loss of heterogeneity and associated inherent resilience.

FIGURE 8.4 Press disturbances and anthropomorphic change push ecological properties from one positive
feedback loop to an alternative state with different ecosystem properties.
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For example, when water is abstracted during floods (flood harvesting), fine sediment and
sand particles can build up across the gravel bed through increased deposition (Hicks et
al., 2021). This deposition can homogenise many parts of the riverbed through time, often
compounded by weedy vegetation that traps more sediment. Vegetation that builds up on
gravel bars can then further restrict channel movement and redirect flows to main channels.
This increases scour in main channels and further reduces the total number of channels. The
weed encroachment creates further sediment entrapment on exposed gravels, reducing the
frequency of disturbances and facilitating further weed invasion and channel alteration.
Overall, weeds, water abstraction, and sedimentation could combine in a biophysical feed-
back loop that reduces channel complexity and the inherent resilience that channel heteroge-
neity provides (Fig. 8.4).

Reduced channel complexity associated with many of these other types of disturbances
creates extended periods of lost connectivity between river channels, both longitudinally
and laterally, potentially further reducing resilience facilitated by species and resource move-
ments (Larned et al., 2008; Chapter 10). Under this scenario, the flow regime may remain the
same but the flow is concentrated into fewer channels due to reduced complexity, increasing
potential scour and shear stress on the bed of the main channel environment (Gray et al.,
2016). Weed encroachment can also directly cause terrestrial habitat loss and reduce biodiver-
sity of species that have evolved specific traits to deal with the inherently unstable flow
regime. For example, the birds that are top predators on braided rivers in New Zealand no
longer have areas to nest and feed in weed-dominated areas, whilst simultaneously becoming
more vulnerable to nonnative mammalian predators (Maloney et al., 1999; Sanders and Malo-
ney, 2002). Thus, weed invasions push the whole river system towards a much more homo-
geneous environment where resilience mechanisms inherently associated with a moving bed
habitat mosaic are significantly reduced, and the feedbacks likely lock the braidplain in a new
degraded and less resilient state.

These biophysical feedbacks and state changes are impacting braided rivers worldwide. In
New Zealand, lowland braidplains have frequently been affected by land-use changes,
including encroachment and weed invasion (Brummer et al., 2016; MacLeod and Moller,
2006; Monks et al., 2019; Walker et al., 2003), and upland systems are also now being affected
by encroachment (Weeks et al., 2013). Thus, it is likely that gradients of press disturbances
such as weed invasion and encroachment will affect braided rivers across entire landscapes
(Brummer et al., 2016). These situations need to be addressed by management, and compar-
isons of stability mechanisms between river sites, and between rivers, will help develop so-
lutions. Ecological time-series data and a multidimensional approach to resilience (Donohue
et al., 2013; Eagle et al., 2021) will help reveal the combined effects of press and pulse distur-
bances on these heterogenous systems, and how their resilience may be bolstered in the face
of ongoing threats.

Looking forward

Braided rivers are highly heterogeneous systems in both space and time comprising
ecological resilience mechanisms that occur at multiple scales. We have laid out a framework
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for possible braided river resilience mechanisms, but the interacting disturbances affecting
dynamic river systems like braided rivers and the consequences for their resilience remain
poorly understood (Graham et al., 2021; Kéfi et al., 2019). In particular, the multiple scales
of disturbance that could create a ‘mosaic of disturbance’ and how the mosaic may influence
river ecosystem stability are just beginning to be studied. Large and small floods may have
significantly different impacts on the ecological properties of a river (Death et al., 2015), so
there is a need to further disentangle their relative effects. The former may increase heteroge-
neity and asynchrony and the latter may synchronise and destabilise the system across mul-
tiple trophic levels. Many potential resilience mechanisms we describe above are driven by
the smaller events, but the larger events are critical for maintaining channel morphology
and preventing the reduction in river complexity through hydrogeological mechanisms
such as the redistribution of sediments. Understanding the relative roles of these different
types of disturbance, including their interactions, will be critical as the climate continues to
change (Tonkin, 2022). Furthermore, movement of species, matter, and nutrients between
the heterogenous environments may have an important effect on ecosystem properties of
the wider braidplain given the highly connected system created by disturbance. Thus, under-
standing how movement contributes to the stability and resilience of food webs and metasys-
tems is an area ripe for further work to create a comprehensive understanding of resilience in
spatiotemporally heterogenous systems more generally (Bellmore et al., 2015; McCann et al.,
2005; McLeod and Leroux, 2021; Nyström and Folke, 2001). Finally, press disturbances such
as gravel and water extraction, channel alteration, invasions, and climate change may primar-
ily have net negative effects on existing mechanisms of river resilience (Figs 8.3e8.4). These
types of disturbances provide an opportunity to investigate a gradient of ‘scales of distur-
bance’ in braided rivers and identify biophysical feedback loops and thresholds at which
inherent mechanisms of resilience are lost. Undertaking such investigations in inherently
disturbed systems such as braided rivers will likely reveal ways in which stable ecological
properties persist despite drivers of change.

Glossary
Community A group of interacting populations.
Ecosystem A network of interacting species together with their physical environment.
Mass effects Spatial dynamics where there is net flow of individuals between patches.
Meta-ecosystem More than one ecosystem connected by the movement and flow of energy, material, and organisms

across distinct physical environmental boundaries (Loreau et al., 2003).
Metacommunity Spatially separated communities connected by dispersal of interacting species (Leibold et al., 2004).
Metapopulation Spatially separated populations connected by dispersal.
Metasystem theory The interaction of local and regional mechanisms that shape populations, communities and

ecosystems (Gounand et al., 2018).
Population A group of individuals of the same species that interact.
Source-sink dynamics A dynamic interaction in a metapopulation whereby one population demography allows

population growth which allows the excess of individuals to migrate to a second population which would decline
to extinction without immigration (Pulliam, 1988).

Species insurance effects A mechanism describing how species vary asynchronously in response to their envi-
ronment thus regulating aggregate stability among patches (Loreau and de Mazancourt, 2013).

Spatial insurance effects A mechanism whereby asynchronous variation of communities and populations between
physical patches allows thus regulating aggregate stability among patches (Wang and Loreau, 2014).
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