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Abstract
The Weddell seal (Leptonychotes weddellii) is a fast-ice obligate species that plays an important role as both predator and 
prey within the high-latitude, coastal Southern Ocean. Weddell seals are affected by pressures of marine resource extraction 
and variation in sea-ice extent and characteristics that are affected by climate. Thus, monitoring their population dynamics 
provides an indicator of the effectiveness of fisheries management, and impacts of changing climate in the high latitude 
Southern Ocean ecosystem. Satellite imagery is increasingly being used to monitor the populations of this species, but 
assessment techniques require a better understanding of the environmental factors influencing the likelihood that individuals 
will be on the sea-ice and therefore visible in a satellite image. Addressing that goal, we captured 5054 trail camera photos 
during spring 2017 in the 24-h light at Cape Royds, Antarctica, and then counted seals on the fast ice every 30 min over 
59 days. Using a generalised additive model (63% deviance explained) we described the haulout behaviour of non-breeding 
Weddell seals according to time of day, date, air temperature, pressure, solar radiation, and wind speed. We found that the 
seals’ haulout cycle is driven to a significant degree by weather variables, primarily temperature and wind speed. Quantifying 
these haulout patterns can be used to determine the time of day, and under what conditions, that most seals are hauled out. 
Integrating environmental parameters to correct time-of-day patterns would allow better cross-site abundance comparisons, 
leading to better Weddell seal population estimates for the Ross Sea region and the wider coastal Antarctica.
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Introduction

Weddell seals (Leptonychotes weddellii; WESE) are the 
southern-most of all seal species and are endemic to the 
high-latitude Antarctic, using fast ice as a haulout substrate 

(Garrott et al. 2012; Rotella et al. 2012). Based on recent 
modelling involving satellite imagery, an estimated ~ 84,000 
reproductive female WESE were found along Ross Sea 
coasts in 2011 (LaRue et al. 2021). The females haul out 
to give birth and suckle young, whilst the males remain in 
the water to defend their ‘harem’ and, thus, assessments of 
breeding populations are based around counting females. 
Due to their key role as mesopredator (Abrams et al. 2016; 
Ainley et al. 2021), quantifying their population size and 
distribution is of great importance to better understand the 
Ross-Sea region food web. Indeed, this seal has been deemed 
a key indicator of food web dynamics in the recently desig-
nated Ross Sea Region Marine Protected Area (CCAMLR 
2018a, b). Moreover, WESE are also sensitive to the pres-
ence and type of fast ice, upon which they form haulouts, 
that ice in turn being sensitive to climate factors, such as 
wind (Siniff et al. 2008; Kim et al. 2018). Our ability to 
understand the population dynamics of WESE hinges on 
our capacity to accurately estimate populations and their 
changes over time.
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Satellite imaging is proving an indispensable tool 
for understanding WESE ecology in coastal Antarctica 
(LaRue et al. 2019, 2021; Koerich et al. 2022). Prior to 
the availability of high-resolution satellite imagery, the 
best-studied seal haulout assemblages are near established 
research stations with observations biased toward the 
Austral summer (Siniff et al. 1977). This state of affairs 
poses a challenge to researchers seeking to understand the 
behaviour of WESEs away from logistical centres (Testa 
& Siniff 1987; Kennicutt et al. 2019). The challenge was 
solved by application of various emerging remote sensing 
technologies, such as satellite imaging (Andrews et al. 2008; 
LaRue et al. 2011; Marvin et al. 2016; Moxley et al. 2017). 
The WESE has proven to be an excellent study species for 
satellite sensing due to their propensity to haul out for long 
periods on the sea ice, the contrast between their dark coat 
and the white ice, and their predisposition to be spaced a 
body or more apart during haulout, rather than lying atop 
one another which characterizes most other pinnipeds 
(LaRue et al. 2020).

A principal problem in using satellite imagery to estimate 
WESE numbers is that image availability is limited by cloud 
cover (which in summer is pervasive in the coastal Southern 
Ocean), and the timing of satellite orbits (Banner 2012). 
These orbits were not placed nor timed with counting seals 
in mind (LaRue et al. 2021)! The most accurate counts are 
ones undertaken ‘in person’ over a series of days based 
on individually marked individuals (Rotella et al. 2012). 
Even that effort is compounded by the WESE haulout cycle 

(Stirling 1969a; Testa & Siniff 1987), a cyclical variation 
leading to a systematic under-sampling at specific times 
of day (LaRue et al. 2011)—at different times of day, a 
different proportion of the seal population is hauled-out. 
Thus, in the case of breeding individuals, in which the cycle 
has been studied, images taken in the early afternoon local 
time contain a larger proportion of the population than at 
other times (Smith 1965; Siniff et al. 1971). Consequently, 
the diurnal nature of WESE haulout needs to be quantified 
to design an effective field effort especially to compare 
numbers counted at different locations that had been counted 
at different times of day.

Although the diurnal patterns of haulout have been quan-
tified for breeding/pupping assemblages (e.g., Smith 1965; 
Stirling 1969a; Testa and Siniff 1987), it has not been done 
for non-breeders which tend to haul out at the periphery of 
where breeders concentrate. We set out to determine factors 
that influence haulout patterns of these non-breeding seals, 
and chose to conduct our study at Cape Royds, approxi-
mately two kilometres north of the largest known pupping 
haulout for the species (Erebus Bay, McMurdo Sound; 
LaRue et al. 2019; Fig. 1). By combining camera count data 
with concurrent weather data, we aimed to develop an under-
standing of the proportion of non-breeding WESEs hauled 
out at a specific point in time as affected by a specific set 
of environmental conditions. Our initial hypotheses follow 
that of previous research observing WESE breeding popu-
lations (Stirling 1969b; Siniff 1991; Lake et al. 1997). We 
expected the Cape Royds non-breeding WESE population 

Fig. 1  Map of Ross Island 
identifying the location of the 
study site at Cape Royds in 
relation to Erebus Bay pupping 
concentration. Map courtesy of 
publicly available data provided 
by https:// earth. google. com/ web

https://earth.google.com/web


Polar Biology 

to behave similar to breeders and we hypothesized that: (1) 
time of day affects the number of WESE hauled out on the 
fast-ice, with fewer in the morning and more in the afternoon 
(Smith 1965; Siniff et al. 1971); (2) more WESEs haul out 
when it is warmer; and (3) more WESEs haul out when the 
winds are calmer (Smith 1965). The greater understand-
ing of haulout cycles we generate will help the accuracy of 
future satellite population counts by enabling adjustments 
to be made depending on the time of day or date at which 
satellite imagery is acquired.

Methods

Study area

The study was conducted in 2017 at Cape Royds 
(77°33′33.8"S, 166°09′46.1"E, Fig. 1), where the Shackleton 
party erected a hut in 1907–09. situated ~ 35 km due north of 
Scott Base and McMurdo Station, on the eastern McMurdo 
Sound shoreline of Ross Island. They loaded supplies from 
the ship anchored in Back Door or Front Door bays. This 
region experiences a large seasonal variability in sea-ice 
cover, with complete ice coverage during austral winter, 
sea-ice breakout between November and January, with the 
fast ice edge residing at Cape Royds across to Marble Point, 
eventually leading to open water by February (Kim et al. 
2018). The ocean floor along the coast initially slopes gently 
to around 100-m deep, before dropping off rapidly to over 
800 m (Robinson 1963). Temperatures at Cape Royds tend 
to vary between a monthly mean of − 30 °C in the austral 
winter and 0 °C in the summer (Stearns 1988). In general 
Cape Royds experiences relatively warmer and calmer 
weather than the nearby Ross Ice Shelf (RIS) as the cold 
southerly winds coming off the RIS are diverted eastward 
by the topography of Ross Island (Monaghan et al. 2005).

Seal data

Three Cuddeback trail cameras (20MP, model-E) were set 
up along the rocky shore of Cape Royds viewing Back Door 
and Front Door bays (Fig. 1). The cameras were pointed at 
a series of tidal pressure ridges and ice cracks where seals 
typically haul out. Cameras were set up at varying heights 
above the fast ice (highest ~ 50 m) and, consequently, the 
scope of the area captured varied from camera to camera. 
These cameras took one photograph every 30 min between 
the 30th of October and the 31st of December 2017.

We first counted the number of observable seals in every 
photograph taken by the three trail cameras, also recording the 
date and time of the photograph, the camera the photograph 
set belonged to, and the associated metadata of photograph 
quality and sea-ice cover. In some cases, due to either a 

white-out event or overexposure of the camera from sunlight 
reflected into the lens, we excluded the image from the dataset. 
In general, photographs were rated as anywhere between low 
(low confidence in recording all seals) through medium, to 
high (high confidence in observing all seals in a photograph) 
(Supplementary Table 1).

Environmental data

We used weather data from the Cape Royds Adélie penguin 
colony provided by the “PenguinCam,” which included 
meteorological instruments (http:// pengu insci ence. com, 
and https:// www. polar 66. org/ pcam/ images. shtml). The 
environmental variables recorded were temperature (°C), 
pressure (hPa), wind speed  (ms−1), wind direction (°), 
humidity (%), and solar radiation (V). The data were recorded 
at hourly intervals across the length of the study period.

Statistical modelling

All data processing was conducted in R v4.0.3 (R Core Team, 
2021) with the tidyverse package (Wickham et al. 2019). 
Weather and seal dates were adjusted to match the time zone 
for austral summer 2017 (NZDT). At the beginning of the 
dataset, camera #1 only took one photograph per hour, before 
being recalibrated to take half-hourly images. Consequently, to 
maintain consistent time intervals, we interpolated half-hourly 
seal numbers for a subset of 156 data points by averaging the 
number of seals at the adjacent hourly time stamps.

To overcome the complexities of the dataset (such as the 
nonlinear relationship between environmental covariates 
and WESE haulout behaviour or temporal autocorrelation), 
we chose to use Generalised Additive Models (GAMs) 
provided by the R package ‘mgcv’ (Wood 2008). One of 
the biggest strengths of GAMs is that their additive nature 
facilitates decomposing complex temporal structures into their 
constituent components (Ciannelli et al. 2008). This allowed 
us to specifically target temporal autocorrelation as our model 
breaks down the observed variation in seal numbers into its 
constituent components making all the variables conditionally 
independent from each other. Thus, we could separately 
address the effect of date and time on seal variation from our 
other variables, such as temperature or pressure.

We constructed the following GAM to reveal haulout 
patterns using date, time, camera metadata, and environmental 
variables from Cape Royds:

http://penguinscience.com
https://www.polar66.org/pcam/images.shtml
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where: yi ∼ Poisson
(

�i;�
)

where k is a categorical predictor for three unranked 
camera angles (1, 2, 3), fn is the smoothing term associated 
with each variable (Table 1), and µ is the mean, ϕ the 
overdispersion parameter.

We set the date as a cubic smooth function (“cs”) as cubic 
functions can handle temporal autocorrelation structures 
well (Ciannelli et al. 2008; Wood 2008). All environmental 
covariates in our models were fitted as penalised thin-plate 
smooths (“ts”) to account for their correlation structures 
and optimised by restricted maximum likelihood (REML) 
method (Blanchet et al. 2015; McIntosh et al. 2015). The 
penalization of these smooths automatically accounts 
for collinearly present variables (Wood 2008; Marra and 
Radice 2010), reducing the effective size of the smooth 
and accounting for overfitting. We selected variables in 
accordance with these hypotheses and selected the final 
model by comparing AIC, deviance explained, and a bias 
for simplicity.

Results

We processed 5311 photographs from three separate cameras 
during the spring of 2017. In total 8153 WESE observations 
were recorded, with at least one seal present in 2662 (50%) 
of the photographs. The mean number of WESEs observed 
per photograph was 1.72 (SE ± 0.03), and the largest number 

log
(

�i
)

= 1 + f1(Datetime) + f2(time of day)

+ f3(temperature) + f4(pressure)

+ f5(wind speed) + f6(solar radiation)

+ f7(photograph quality) + Camerak

of WESEs counted within one photograph was 14 individu-
als. The time of day in which the fewest WESEs were hauled 
out was 0330 NZT with a mean of 1.07 (SE ± 0.16) seals, 
whilst the time with the most WESEs was 1330 NZST, with 
a mean of 2.45 (SE ± 0.28) WESE (Fig. 2). The highest 
daily mean was 5.32 (SE ± 0.41) on 30 November. The most 
WESE observed simultaneously across three cameras at the 
same point in time was 20 individuals. Across the 2507 half-
hourly time points between 31 October and 28 December 
2017, 895 (36%) were captured in all three cameras; 601 
(24%) were captured by two cameras; and 1011 (40%) by 
only one camera.

Time of year was overall the largest contributing factor 
to the number of WESEs hauled out at Royds. The mean 
number hauled out per image was 2.5 individuals fewer at 
the end of December compared to the beginning of Novem-
ber (Fig. 3). We found that haulout behaviour was cycli-
cal, although once controlled for meteorological variables, 
the effect of time of day itself on haulout is much reduced 
(Fig. 4), with the model only attributing a variation of 0.3 
seals between early morning and early afternoon. Whilst all 
environmental variables contributed to explaining WESE 
haulout behaviour, our model identified wind speed and tem-
perature as the primary environmental drivers of haulout. 
The final model explains 63% of the variation in WESE 
haulout observed in photograph counts at Cape Royds 
(Table 1).

Discussion

Through trail camera observations at Cape Royds, McMurdo 
Sound, Antarctica during the WESE pup-rearing season 
(austral spring), we found that variation in environmental 

Table 1  Results of the GAM 
used to explain non-breeding 
Weddell seal haulout behaviour 
at Cape Royds, Antarctica 
between 31 October and 28 
December 2017

The model explains 62.5% of the deviance observed
Estimated degrees of freedom are a representation of the ‘wiggliness’ of a relationship between covariate 
and response variable, an estimated degree of freedom of 1 implies a linear relationship and larger numbers 
imply progressively more wiggliness
Chi-squared describes the relative contribution of a variable to the observed deviation in seal numbers, 
with a higher Chi-squared implying a higher contribution

Variable Smoothing terms Estimated degrees 
of freedom

Chi-squard P-value

Datetime Cubic regression (cr) 3.975 1890.83  < 0.0001
Time of day Cyclic cubic (cc) 4.230 40.12  < 0.0001
Temperature thin-plate shrinkage (ts) 6.972 469.11  < 0.0001
Pressure thin-plate shrinkage (ts) 3.283 62.99  < 0.0001
Wind speed thin-plate shrinkage (ts) 7.144 543.52  < 0.0001
Solar radiation thin-plate shrinkage (ts) 4.612 200.37  < 0.0001
Photograph quality random effect (re) 1.945 417.51  < 0.0001
Camera number random effect (re) 1.998 3355.86  < 0.0001
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covariates, such as temperature and wind speed, are the pri-
mary factors affecting the diurnal cycle in number of non-
breeders hauled out at Cape Royds. Our work builds upon 
and explains previous work that demonstrates the general 
principle that more WESEs haul out in the afternoon than in 
the morning, local time (Smith 1965; Stirling 1969a; Siniff 
et al. 1971; Thomas and DeMaster 1983; Lake et al. 1997; 
Banner 2012). We suggest that whilst population estimates 
acquired from satellite imagery may be able to correct for 
time-of-day and day-of-year (LaRue et al. 2021), including 
local environmental covariates may increase the precision 
of population estimates.

Seasonal variation

The number of individual WESEs hauled out per photograph 
declined between 31 October and 28 December, which is in 
line with other work in the Vestfold Hills, East Antarctica, 
which found a decrease of ~ 10%–an order of magnitude 
less than in our model (c.f. Lake et al. 1997). The decrease 
in seal presence in our case is unlikely to be caused solely 
by individuals spending less time hauled out in December 
compared to November and is more likely explained by 
WESEs leaving the study area to haul out elsewhere, such 
as southern McMurdo Sound. There, fast ice persists longer 

and that is where large numbers undergo their annual moult 
(Ainley et al. 2015). We hypothesize two reasons why this 
pattern shows up at Cape Royds. First, WESEs at Cape 
Royds tend to be non-breeding and are not tied to a location 
by the presence of a pup (Stirling 1969b). In other words, 
subadults and skip-breeders are mobile. Second, distance 
to the fast-ice edge is a significant predictor of WESE 
distribution, where there exists a certain ‘ideal’ distance 
away that WESEs are more likely to be located (Larue et al. 
2019). At the fast-ice edge at Cape Royds, the seals are 
risking predation by mammal-eating, type-B killer whales 
(Orcinus orca), which arrive in mid-November (Ainley 
et al. 2017). It appears that the break-out of fast-ice at Cape 
Royds and the associated increase in predation risk from 
killer whales may contribute to the decreasing trend of 
WESE hauling out through the season. Indeed, upon the 
arrival of killer whales no longer do WESE remain at the 
ice edge, heading to the interior of the McMurdo Sound fast 
ice (Saenz et al. 2020).

Therefore, we suggest that the apparent seasonal decrease 
of animals at Cape Royds is due to regional movements of 
WESE (Smith 1965; Ainley et al. 2015). This is an important 
caveat for our model, as it implies that the effect of date is 
unique and specific to the Cape Royds population, although 
analogous patterns should be found elsewhere. Fast-ice will 

Fig. 2  Mean number of Weddell seals per photograph per 30-min-
time period hauled out on the sea ice at Cape Royds over a 24-h 
period between 31 October and 28 December 2017 as observed by 

three separate Cuddeback trail cameras. Shading represents 1 stand-
ard error on either side of the mean
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break out at different points in time around the continent, 
possibly exposing WESE populations to different predation 
pressures and their timing.

Haulout cycle

The presence of a haulout cycle was not surprising 
considering several other studies documented this 
phenomenon (Smith 1965; Siniff et al. 1971). Our model 
indicates that fewer WESEs haul out when it is colder, and 
windier, likely a function of thermoregulation, as wind speed 
is a significant contributor to heat loss in hauled-out WESEs 
(Mellish et al. 2015). These findings are in line with research 
conducted at Syowa station in East Antarctica, where it 
was found that fewer WESE hauled out when windspeeds 
exceeded 5.3 m/s or temperatures were below − 8.3 °C, in a 
behavioural attempt to manage thermoregulation and prevent 
heat-loss (Sato et al. 2003).

Part of the haulout cycle exhibited at Cape Royds may 
also be due to the diurnal pattern of prey availability (Stirling 
1969b). The depth of Antarctic silverfish (Pleuragramma 
antarcticum) and Antarctic toothfish (Dissostichus mawsoni) 
correlates with surface light intensity, and they are both 
highest in the water column and thus more available when 
light intensity is at its lowest (Fuiman et al. 2002; Ainley 

et al. 2016)—the shadow of Mt Erebus (height 3800 m) 
spreads across southeastern McMurdo Sound during the 
‘morning’ (2300–0600 local time). Indeed, unlike (Sato et al. 
2003), we also observed that more seals were in the water 
when solar radiation was at its lowest amplitude. This pattern 
likely reflects observations being limited to early afternoon 
and therefore not capturing the diurnal variation in solar 
radiation that we observed, that can drive prey availability 
and seal haulout. In Arctic ringed seals (Pusa hispida) there 
is a diurnal haulout cycle associated with zooplankton 
movements (Von Duyke et  al. 2020), and grey seals 
(Halichoerus grypus) show a cycle in foraging behaviour 
linked to diurnal movements of sand eels (Photopoulou 
et al. 2014). Time-depth recordings of eight adult WESEs 
from the eastern Weddell Sea (Plötz et al. 2001) found that 
foraging dives increased in depth between 0800 and 1000 
local time. Thus, our observation of a diurnal WESE haulout 
cycle may be partially a consequence of a foraging pattern 
driven by diurnal variation in prey availability (see also 
Beltran et al. 2021).

Our model suggests that this study did not capture all 
the drivers of diurnal variation in non-breeding WESEs 
at Cape Royds. Due to higher daily counts of seals at Big 
Razorback (around 20 per day), one of the pupping sites 
south of Cape Royds (Fig. 1), Banner (2012) was able to 

Fig. 3  Mean number of Weddell seals per photograph per day hauled 
out on the fast ice at Cape Royds, Antarctica between 31 October and 
28 December 2017. Photographs were taken by three separate Cud-

deback trail cameras at 30-min time intervals. Shading represents 1 
standard error on either side of the mean
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generate a separate haulout cycle for each day of the study. 
Haulout patterns observed in both studies demonstrated peak 
haulout between 1200 and 2000 NZST (Fig. 4). A key point 
of distinction between the research of Banner (2012) and our 
study is that we looked at non-breeding WESE, in contrast to 
pup-suckling female adults. The fact that this haulout cycle 
persists between both demographics drives home the point 
that it is not present purely as a result of females needing to 
balance the acts of foraging and weaning their pups (e.g., 
Beltran et al. 2017).

Concluding remarks

Better census data are critical in understanding and 
monitoring the broad-scale ecology of the WESE in both 
the Ross Sea region and coastal Antarctica as a whole. Given 
the species’ circumpolar distribution (LaRue et al. 2021), 
they will experience a range of environmental conditions, 

changing at different rates, from climatic changes and less 
sea ice to altered fish availability (Vaughan et al. 2003; 
Joughin et al. 2014; Ainley et al. 2015; Salas et al. 2017). 
Monitoring how the WESE reacts to these changes will 
improve our understanding of the impacts that environmental 
change will have on Antarctic ecosystems, and especially 
the Ross Sea Region MPA, the WESE being an “indicator 
species” (Koerich et al. 2022; CCAMLR 2018a, b). The need 
to adjust census-based data is paramount to establishing 
regional population estimates. In a field increasingly relying 
on remote sensing, between-site calibration of haulout cycles 
will remain important.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00300- 024- 03274-5.
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